Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.
Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.
Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.
Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.
Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:
Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.
Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.
Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.
В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.
Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.
В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.
Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.
Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:
Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.
Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.
Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.
Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.
Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т.д.
Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.
Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.
При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.
Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему
То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.
Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.
Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.
Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.
В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.
С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.
По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск, подавая дизтопливо до 10 раз за один рабочий такт мотора.
Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.
Воспламенение от электрической искры (бензиновый двигатель).
В бензиновом двигателе в конце такта сжатия горючая смесь воспламеняется от электрической искры. Эту искру в определённый момент генерирует свеча зажигания. В момент образования искры начинает образовываться очаг горения смеси. Далее этот очаг расширяется и превращается во фронт пламени, который поглощает новые порции свежего заряда.
Максимальное давление горящих газов в бензиновом ДВС может достигать 80 атм, это в 40 раз больше давления в автомобильном колесе!!!
Во время горения смеси давление и температура в камере сгорания повышаются, давление начинает воздействовать на поршень.
Фронт пламени разделяет камеру сгорания на сгоревшую и несгоревшую зоны.
Детонация
Детонация в двигателе — процесс неконтролируемого сгорания топливовоздушной смеси (взрыва), приводящий к сильным ударным нагрузкам на шатунно-поршневую группу и провоцирующий усиленный износ этих деталей.
Нормальная скорость сгорания в двигателе равна 25м/сек, при детонации пламя распространяется со скоростью 2000м/сек, а это уже взрыв.
Детонация может быть спровоцирована чрезмерно ранним зажиганием (несвоевременный момент воспламенения рабочей смеси в цилиндре). Еще одной причиной возникновения детонации двигателя является использование топлива, октановое число которого ниже, чем это предусмотрено в технических требованиях конкретного двигателя (например, использование бензина А-76 вместо А-95). Низкооктановые бензины рассчитаны на использование в двигателях с низкой степенью сжатия, а высокооктановые бензины – с относительно высокой степенью сжатия. В современных двигателях начало детонации контролируется датчиком детонации, и блок управления двигателем принимает соответствующие меры по предотвращению этого процесса.
Часто причиной детонации является Калильное зажигание.
Калильное зажигание — преждевременное (до появления искры) воспламенение смеси от раскаленного нагара или перегретых деталей камеры сгорания (например — от того же электрода свечи). Калильное зажигание нарушает процесс нормального сгорания бензина, имеет непосредственную связь с развитием или возникновением детонации.
Вероятные причины возникновения калильного зажигания:
Воспламенение от сжатия (дизельный двигатель).
В дизельном двигателе, в отличие от бензинового, сжимается только воздух. При такте сжатия воздух сжимается в 20 раз (вспомните степень сжатия), при этом воздух сильно нагревается. В конце такта сжатия в камеру сгорания посредством форсунки впрыскивается топливо под давлением 900-2000 атм. Распыленное топливо нагревается, испаряется и затем самовоспламеняется. При этом образуется огромное количество очагов горения. Всё это происходит за очень короткий отрезок времени.
В конце сжатия в дизельном двигателе воздух нагревается до 800-900 градусов!
Максимальное давление горящих газов в дизельном двигателе может достигать 160 атм. В обычной городской водопроводной системе давление всего 6 атм, много, так вот отчего мы слышим характерный звук работы дизельного двигателя!!!
Сравнение бензинового и дизельного двигателей.
Какой двигатель лучше?
В среде автомобилистов немало расхожих заблуждений, некоторые из них касаются особенностей бензиновых и дизельных двигателей. Почему-то принято считать, к примеру, что у дизеля больше ресурс, и что у него «лучше» момент на низких оборотах. Попробуем разобраться. Для начала пройдем короткий ликбез, вспомним особенности моторов обоих типов. Основное и решающее отличие дизельного двигателя от бензинового — в организации рабочего процесса. Именно из-за него конструкции моторов — разные. 1. Бензин Начнем с бензинового двигателя. Топливовоздушная смесь у него формируется вне цилиндра, во впускном коллекторе (пока непосредственный впрыск оставим за кадром). Пары топлива окончательно перемешиваются с воздухом в конце такта сжатия. В камере сгорания образуется топливная смесь, которая называется гомогенной, с равномерным распределением топлива по объему. От сжатия температура смеси поднимается до 400–500 0С (ниже температуры самовоспламенения бензина). Далее смесь воспламеняется искрой свечи зажигания. Такая организация рабочего процесса ощутимо сужает возможности двигателей. Во первых, топливо должно иметь высокую испаряемость при температуре окружающей среды, иначе гомогенную смесь к моменту зажигания не получить, И, значит не будет быстрого и полного ее сгорания. Это резко сужает возможный перечень альтернативных топлив. Во вторых, в двигателе с внешним смесеобразованием есть цикл сжатия топливной смеси. Это сильно ограничивает возможную степень сжатия (ε), а она, между прочим, сильно влияет на КПД двигателя. Повысить степень сжатия не дает детонация. Поднять детонационный порог помогает высокое октановое число бензина, сокращение времени распространения фронта пламени и снижение температуры топливного заряда. В современных моторах удается достичь степени сжатия примерно около 11 единиц и, скорее всего, эта величина — предельная. В третьих, способность к воспламенению и сгоранию гомогенной смеси находится в узком диапазоне соотношения воздуха к бензину, с коэффициентом избытка воздуха 0,8< λ
Многие опытные водители полагают, что рабочая температура двигателя находится в пределах от +87 до +95 градусов Цельсия. Действительно, большинство двигателей внутреннего сгорания (ДВС), выпущенных в прошлом веке, имеют приблизительно такой температурный режим.
Сейчас лишь отдельные силовые агрегаты соответствуют таким значениям температурного диапазона. Большинство моделей ДВС имеют несколько больший температурный показатель.
Одной из главных характеристик двигателя внутреннего сгорания является его коэффициент полезного действия (КПД). Он определяет эффективность работы силового агрегата, уровень потребления топлива на единицу пробега. Согласно исследованиям в области термодинамики французского инженера Сади Карно (1796-1832), КПД ДВС увеличивается с ростом рабочей температуры двигателя.
Бесконечно увеличивать температуру рабочей области цилиндров нельзя, иначе процесс может привести к необратимым последствиям. Со времени изобретения первых двигателей внутреннего сгорания в качестве регулятора рабочей температуры использовались потоки воздуха. Затем стали применять водяное охлаждение. С помощью водяного охлаждения удалось создать высокоэффективные системы охлаждения ДВС с точной стабилизацией температурного режима.
В начале 90-х экологические и экономические проблемы обозначили задачу увеличения эффективности ДВС. Прямой путь к этому – увеличение рабочей температуры двигателей. Это можно сделать путем:
Совместное применение этих технологий позволило увеличить рабочую температуру некоторых двигателей до +100 и более градусов Цельсия.
Именно поэтому нельзя открывать пробку радиатора прогретого автомобиля!
При уменьшении давления в системе охлаждения антифриз мгновенно вскипает. Это может привести к повреждению двигателя и серьезным паровым ожогам.
Следует понимать разницу между рабочей температурой двигателя и в цилиндрах ДВС. Температура в цилиндре может достигать значений значительно больше +1.000 градусов Цельсия. Рабочая температура двигателя — это температура в системе охлаждения двигателя. Она характеризует состояние температурного баланса, при котором поддерживается постоянный уровень в системе охлаждения. При этом достигается максимальный коэффициент полезного действии, минимальный уровень токсичности выхлопных газов, обеспечивается оптимальная эксплуатация силового агрегата. Значение рабочей температуры зависит от типа двигателя.
Видео — о правильном выборе охлаждающей жидкости по температуре кипения:
В процессе эксплуатации автомобиля могут возникнуть две классические ситуации:
Какие причины, возможные последствия и способы устранения неисправности в подобном случае.
Возможные причины:
Опасные последствия:
Способы устранения:
Видео — возможные причины перегрева двигателя:
Возможные причины:
Опасные последствия:
Способы устранения:
Видео — почему двигатель не прогревается до рабочей температуры:
В первую очередь необходимо определить время, необходимое для прогрева двигателя. Оно зависит от климатических параметров и особенности ДВС. Считается нормальным, когда движение после длительной стоянки начинают при отклонении стрелки индикатора температуры двигателя на четвертую часть шкалы. В зимний период необходимо прогревать двигатель немного на больший уровень. Если в автомобиле установлена АКПП, следует увеличить температуру прогрева. Горячий двигатель передает тепло коробке передач, облегчая режим ее эксплуатации.
В любое время года следует раз в неделю контролировать уровень антифриза в расширительном бачке и отсутствие цветных пятен под автомобилем после стоянки. Также следует следить за стрелкой индикатора во время движения.
Остановка двигателя во время приближения температуры к критической величине при нахождении в пробках может привести к отрицательному результату — прекратится циркуляция охлаждающей жидкости.
Если в процессе эксплуатации двигателя откажет система управления вентилятора радиатора, возможна временная установка «принудительной кнопки» включения вентилятора.
В каких случаях оправдана установка спутниковой сигнализации на автомобиль, а в каких это не имеет особого смысла.
Что такое EBD в автомобиле и как работает данная система.
Как производится восстановление нитей https://voditeliauto.ru/poleznaya-informaciya/to-i-remont/obogreva-zadnego-stekla.html обогрева заднего стекла.
Видео — если двигатель Рено Логан не прогревается до рабочей температуры, возможная причина:
Может заинтересовать:
В разделе Прочие Авто-темы на вопрос Какое максимальное давление в камере сгорания ДВС (при вспышке горючей смеси) ? заданный автором Выросток лучший ответ это В бензиновом двигателе без турбины порядка 50 атм. , а в дизеле до 200.Эрни ПрэнгМастер(1570)
Это не из интернета.
Ответ от 22 ответа[гуру] Привет! Вот подборка тем с ответами на Ваш вопрос: Какое максимальное давление в камере сгорания ДВС (при вспышке горючей смеси) ?Ответ от Lexusgeorge[гуру]Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 - 9 МПа, а температура 1800 - 2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3 - 0.5 МПа, а температура до 700 - 900 С.Ответ от Serg Havr[гуру]Pz- максимальное давление сгорания очень важный показатель, если расхождение по цилиндрам более 3-5 кг/см2,то такая работа быстро приведет к плачевному результату. На каждый двигатель есть свой паспорт, там и смотри. Зависит от наддува (есть или нет), угла до ВМТ воспламенения, качества топлива (теплотворной способности), износа ЦПГ, и т. д. Колеблется в широких пределах 40 - 80 кг и выше (форсированные). Бензиновый двигатель внутреннего сгорания на ВикипедииПосмотрите статью на википедии про Бензиновый двигатель внутреннего сгоранияДвигатель внутреннего сгорания на ВикипедииПосмотрите статью на википедии про Двигатель внутреннего сгорания
Рейтинг: 5 / 5
Температуры в поршне
Температура поршня и цилиндра - важный параметр для эксплуатационной безопасностии срока службы. Пиковые температуры выхлопного газа, даже если они действуют короткоевремя, могут достигнуть больше 2,200°C. Температуры выхлопного газа варьируются между
600 к 850°C для дизельных двигателей, и 800 к 1050°C для бензиновых двигателей.
Температура свежей смеси (воздух или смесь) может быть боле 200°Cдля турбированных двигателей. Интеркуллеры на впуске уменьшают температуру до 40-60°C,
что обеспечивает лучшее заполнение камеры сгорания, так же использование впрыска водо-метанола дает хорошие показатели на впуске, об этом писал в теме про в пуск.
Из-за теплоемкости, поршня и других частей в камере сгорания невозможно точно определить температурные колебания. Но все же можно утверждать, что есть небольшая амплитуда изменения температуры поршня хоть и в несколько градусов, в зависимости от такта, впуск это или рабочий ход. Днище поршня первым подвергается нагреву раскаленными газами и поглощает различное количество тепла,в зависимости от такта, оборотов двигателя и нагрузки. Высокая температура в первую очередь отводится через поршневые кольца к стенкам цилиндра, и в меньшей степени, юбкой поршня.
Дальше разберем самые нагруженные температурные области поршня, следует отметить что они различны для разных типов поршней и зависят от их формы и материала из которого они изготовлены. Типичные температурные распределения для бензинового идизельного двигателя показаны на рисунках 1.1 и 1.2.
Рисунок 1.1:
Температурное распределение впоршне бензинового двигателя
Рисунок 1.2:
Температурное распределение впоршне дизельного двигателя
Температурные уровни и распределение в поршне по существу зависят от следующихпараметров:
Прочность поршней, особенно из легких сплавов, очень зависит от температуры. Очень важно знать о высоко температурных зонах возникающих в процессе работы, возможном расширении металла в этих областях и сможет ли поршень выдерживать нагрузку в этих режимах, особенно при возникновении детонации. Хоть современные двигателе и оснащаются системами контроля детонации, но все же она уместна и может привести к серьезным последствиям . Высокие тепловые нагрузки вызывают быстрое старение метала или так называемая усталость. Чаще всего усталость металла наблюдается в соединении поршневого пальца и поршня, а также в канавке первого компрессионного кольца..
Чрезмерно высокая температура компрессионного кольца приводит к нагару масла в канавке, закоксованию и в следствии залеганию. Повышается нагрузка на остальные кольца и теряется герметичность камеры сгорания, через кольца прорываются отработанные газы нарушая смазку поршня, что приводит к увеличению силы трения и еще большему увеличению температуры поршня. в последствии его заклиниванию или задирам.
Масса поршня
При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.
Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.
О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.
Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.
Процесс сгорания условно делят на три фазы.
Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.
Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.
Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.
От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.
Продолжительность первой фазы зависит от ряда факторов.
Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.
На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.
При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.
Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.
Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.
Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.
Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.
При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.
Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.
Состав рабочей смеси оценивается коэффициентом избытка воздуха а. Состав влияет на скорость сгорания, количество выделяемого тепла, вследствие чего изменяются давление и температура газов в цилиндре. Минимальное значение угла опережения зажигания, периода задержки воспламенения и максимальное давление в цилиндре достигаются при а =0,85…0,9. При этом значении коэффициента избытка воздуха двигатель развивает максимальную мощность. По мере обеднения состава смеси (а>0,9) изменяется величина оптимального значения Фз, уменьшается величина максимального давления сгорания.
Для каждого двигателя принят свой оптимальный состав рабочей смеси, при котором на данном режиме достигается минимальный удельный расход топлива. Для двигателей со степенью сжатия около 8 при почти полном открытии дроссельной заслонки экономичный состав смеси получается при и =1,15…1,2. Для каждого скоростного и нагрузочного режима работы двигателя с искровым зажиганием существует также свое оптимальное значение угла опережения зажигания. Поэтому в конструкции таких двигателей предусмотрено устройство, обеспечивающее автоматически в зависимости от режима работы двигателя оптимальное значение ф3.
Рис. Влияние частоты вращения n и угла фз, опережения зажигания на характер индикторных диаграмм карбюраторного двигателя: а — угол фз — неизменный на всех скоростных режимах; б — углы ф2 и ф3 — подобраны для каждого скоростного режима: 1 — n = 1000 об/мин; 2 — n = 2000 об/мин; 3 — n = 3000 об/мин.
При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.
В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.
Основные причины появления детонации:
На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.
Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.
В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.
При работе двигателей наблюдаются случаи, когда после того, как выключено зажигание, двигатель продолжает некоторое время работать. Объясняется это тем, что при прикрытой дроссельной заслонке температура рабочей смеси в конце такта сжатия повышается и смесь самовоспламеняется, если частота вращения коленчатого вала прогретого двигателя составляет 300…400 об/мин. Чтобы предотвратить это явление, в конструкцию карбюратора вводят устройство, которое автоматически прекращает подачу топлива при выключении зажигания.
Рис. Индикаторная диаграмма дизеля: Q1 , Q2 и Q3 — фазы сгорания топлива; Фвц — угол опережении впрыска топлива.
Топливо впрыскивается в камеру сгорания дизеля за несколько градусов угла фвп поворота коленчатого вала до прихода поршня в в.м.т. К этому времени воздух в камере сжимается до 3…4 МПа и нагревается в результате этого до 450…550°С. Заканчивается подача топлива после в.м.т. На участке 1…2 давление в камере изменяется за счет сжатия воздуха поршнем — горение топлива еще не началось. Температура в камере немного понижается вследствие ввода в камеру холодного топлива. Затем топливо самовоспламеняется, пламя начинает распространяться по камере, и давление, начиная от точки 2, повышается за счет горения топлива. Угол фвп между началом впрыска (точка 1) и в.м.т. называется углом опережения впрыска. Угол Qi между началом впрыска и моментом начала подъема давления (точка 2) называется периодом задержки воспламенения. В этот период топливо под действием температуры и вихревых движений в камере переходит из жидкого состояния в газообразное, появляются отдельные очаги самовоспламенения.
Период сгорания топлива в цилиндре дизеля условно делят на три фазы:
Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.
Экономичность цикла зависит от характера и продолжительности протекания процесса подготовки топлива к самовоспламенению (период Qi — задержки самовоспламенения) и характера сгорания (первая Q1, вторая Q2 и третья Q3 фазы сгорания).
За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.
Рассмотрим влияние каждого фактора на величину Qi.
Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.
Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.
Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.
Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.
Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.
Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.
Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.
Средняя скорость нарастания давления на участке 2…3 определяет жесткость работы дизеля. Ее считают нежесткой, если средняя скорость нарастания давления дельта_Р/дельта_ф не превышает 0,5 МПа на 1° угла поворота коленчатого вала.
Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.
Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.