Отдел продаж
8 (499) 755-89-57
Лодки, запчасти
8 (499) 755-89-57

Как работает гидравлика на велосипеде


как они устроены, плюсы и минусы

Вектор действия тормозов как механических, так и гидравлических один – стоп - машина. Но возникает масса нюансов и вопросов как к одной, так и к другой схеме привода тормозов. Сегодня мы постараемся промыть кости гидравлическим тормозам.

Основное их отличие от механики в том, что для привода тормозных колодок используется гидролиния, а не тросики. Гидравлика соединяет тормозные ручки с тормозным механизмом непосредственно. В роли которого могут быть как дисковые гидравлические тормоза, так и обычные ободовые.

Принцип работы

Гидролиния заполнена специальным маслом или тормозной жидкостью, которые находятся под небольшим давлением. При нажатии тормозной ручки, велосипедный тормозной цилиндр вытесняет жидкость из гидросистемы, и она оказывает давление на рабочий цилиндр, который установлен на вилке или раме велосипеда. В свою очередь, рабочий цилиндр приводит в действие поршень и тормозные колодки, которые блокируют колесо посредством тормозного диска. Очень просто. Вот схема для наглядности.

При работе с гидравлическими тормозами стоит учесть, что тормозная жидкость очень токсична и может вызвать сильное отравление. Также она пагубно влияет на лакокрасочное покрытие и пластиковые детали.

Преимущества и недостатки гидравлики

Точность дозирования и скорость реакции механизма на нажатие ручки – вот два главных качества, из-за которых стали широко применяться гидравлические тормоза. Это далеко не единственные преимущества, но именно они заставили спортсменов по даунхиллу обратиться именно к гидравлике.

Прекрасная выносливость гидравлических тормозов тоже сыграла свою роль в миграции гидравлики на велосипед. Как и точность срабатывания, для даунхилла это было очень важным качеством.

Надежность системы проверена годами ее использования на автомобилях. При соответствующем уходе, гидравлические тормоза на велосипедах в разы надежнее, чем механика. Обостренное чувство силы дозировки позволяет манипулировать тормозами с ювелирной точностью. В экстремальных видах спорта это просто необходимо.

К недостаткам гидравлических тормозов следует отнести следующее:
Стоимость гидросистемы намного выше, чем механической, поэтому и велосипед с гидравлическими тормозами будет дороже.
Сложность обслуживания. Гидросистема довольно сложный и технологичный узел, требующий в обслуживании навыков и четкого знания конструкции и ее особенностей. Не каждый байкер в состоянии самостоятельно перебрать систему и провести ее ремонт качественно. Также ремонт в полевых условиях при отсутствии опыта может вызвать трудности. Тормозные трубки и шланги требуют бережного отношения. Они довольно уязвимы и от их состояния зависит качество работы всей системы. Также тормоза могут быть привередливы к качеству тормозной жидкости или масла, поэтому при прокачке следует делать обдуманный выбор.

Чаше всего гидравлические тормоза используют в паре с дисковыми. Буквально несколько слов стоит сказать и о них.

Виды дисковых гидравлических тормозов

Основное отличие дискового тормоза от обычного ободового в том, что торможение происходит посредством зажатия тормозного диска, жестко закрепленного на ступице, тормозными колодками, которые зафиксированы сзади на раме и спереди на перьях вилки.

Конструкция главного тормозного цилиндра может быть разной, и в зависимости от этого гидравлические тормоза делят на такие виды:

  • Однопоршневые;
  • Двухпоршневые с оппозитными поршнями;
  • Двухпоршневые с плавающими поршнями;
  • Многопоршневые.

В основном используют двухпоршневые с оппозитными поршнями. Встречаются и однопоршневые, но в силу недостатков их почти полностью заменили двухпоршневые. Сложные многопоршневые системы применяют в основном для даунхилла, где решающую роль играет мощность, а не простота конструкции.

По типу жидкости, применяемой в гидросистемах, тормоза могут работать на тормозных жидкостях и на масле. Каждая из них имеет свои достоинства и недостатки, но однозначного мнения по этому поводу нет. Калипер может быть монолитным, что делает конструкцию жестче и легче, и составным – дешевле по цене, но сложнее в обслуживании.

Дисковый гидравлический тормоз очень надежен, но в полевых условиях произвести его ремонт и настройку непросто. Правда, чтобы довести до состояния комы гидравлический тормоз нужно очень постараться.

Существуют некоторые проблемы, связанные с тем, что у дисковой гидравлики зазор между колодками очень невелик и при наличии сильной грязи колодки подвергаются повышенному износу. Но у механики преимуществ в этом случае нет, так как изношенные колодки на ходу не отрегулируешь, а у гидравлики они подводятся автоматически по ходу износа.

Стоят они дороже ободных, несколько увеличивают нагрузку на втулку при торможении, хотя это спорный вопрос. Детально углубляться в подробности дисководства не будем, так как это отдельная тема для разговора, а пока приступим к рассмотрению того, что приготовили производители для желающих поставить на велосипед гидравлические тормоза.

Обзор лучших

Из миллиона типов тормозных систем все чаще и чаще на байках среднего и очень среднего уровня можно встретить гидравлику. Так как растет их популярность, то и цена соответственно падает. Поэтому есть смысл подумать о том, чтобы переоборудовать свой велосипед под гидравлическую тормозную систему. Примеров много, но мы приведем всего два. Для контраста.

Shimano представили новую коллекцию в начале года, обновив линейку Deore. Приятные ручки стабильная работа главного тормозного цилиндра доставляют настоящее удовольствие от четкого срабатывания и послушности всей системы в целом. Немного омрачает картину мелкое дребезжание самой ручки.

В новой линейке предлагают на выбор шлицевое или болтовое крепление ротора. В комплекте Shimano Deore идут два вида колодок – прорезиненные и металлизированные. Первые изнашиваются очень быстро. Гидравлика в целом отличного качества и своих 50 у.е., безусловно, стоит.

CLIM 8 CLARK`S. Преимущества этих тормозов в том, что за цену одноцилиндрового тормоза вы получаете полноценный многоцилиндровый гидравлический тормоз. Но чудес не бывает, и за все надо платить. Дизайн ручек слегка настораживает, но это на любителя. Зато гидрошланги армированы кевларом и металлом.

Калипер имеет интересную шестицилиндровую конструкцию, обещающую быть надежной. Минусы этой системы в несколько увеличенном весе. В установке они тоже не так просты, как кажутся – при установке требуют тщательной подгонки колодок к дискам.

Есть очень разные отзывы о работе гидравлических тормозов. Говорят, что они сложные в обслуживании. Позволим себе отметить, что это очень спорное утверждение. Не очень они сложные. Убедитесь сами. Одна из самых сложных работ по обслуживанию тормозной системы – это их прокачка. С прокачкой тормозов хот раз, но сталкивался каждый байкер, использующий гидравлику. Насколько процедура сложна, судите сами.

Прокачка тормозной гидравлической системы

Причины, по которым следует делать прокачку тормозов:

  • при нажатии на ручку тормоза, она уходит до самой грипсы, т.е. имеет слишком большой ход, но при этом колодки не шевелятся, или не достают до тормозного диска;
  • тормозная ручка проваливается при нажатии или имеет слишком легкий ход;
  • при резком нажатии ручки, после срабатывания тормоза ручка продолжает плавно падать.

Все ясно. Причиной отказа тормозной системы стал воздух, попавший внутрь. Первым делом необходимо найти место, где система схватила воздух. Это может быть поврежденная гидроарматура, закипание жидкости вследствие перегрева, ослабленный штуцер прокачки на цилиндре. После проверки всей системы на предмет утечки жидкости, можно приступать к прокачке.

Прокачку гидравлики производим обязательно на ровной и горизонтальной поверхности. Колодки следует развести, чтобы до диска они не доставали. Далее откручиваем главный цилиндр и закрепляем его строго горизонтально. Каждая система имеет свои особенности прокачки, поэтому лучше делать это по инструкции. Жидкость для прокачки должна соответствовать той марке, которая указана в паспорте.

Теперь следует надеть кембрик на болт прокачки и погрузить его в емкость для сбора остатков жидкости. Откручиваем крышку расширительного бачка, заливаем жидкость до максимального уровня. Несколько раз плавно и не спеша нажимаем на ручку тормоза. Нажимаем до тех пор, пока она не станет тугой. Теперь удерживая ручку, откручиваем болт прокачки с кембриком, не отпуская при этом ручку. Доливаем жидкость в расширительный бачок. Проводим процедуру до тех пор, пока ручка не станет жесткой. Закручиваем расширительный бачок и убираем инструмент. Готово, тормоза прокачаны.

Так что слухи о сложности в обслуживании гидравлических тормозов сильно преувеличены. Наряду с некоторыми недостатками, преимуществ у такой системы все-таки больше. А в принципе, настоящему байкеру не настолько важен принцип работы того или иного механизма, как сам факт свободного передвижения в пространстве.

загрузка...

Как работает гидравлика | Наука гидравлики

Криса Вудфорда. Последнее изменение: 22 августа 2020 г.

Какая связь между водой пистолет и этот гигантский журавль? На первый взгляд, никакой связи. Но подумайте о науке, стоящей за ними, и вы достигнете удивительного вывод: водяные пистолеты и краны используют силу движущихся жидкостей очень похожим образом. Эта технология называется гидравликой, и это используется для питания всего, от автомобильных тормозов и мусоровозов до рулевые и гаражные домкраты для моторных лодок.Давайте подробнее разберемся, как это работает!

На фото: этот кран поднимает свою гигантскую стрелу в воздух с помощью гидроцилиндра. Вы можете заметить здесь барана? Основная из них - сияние серебра на солнечном свете в центре картины. Также имеются гидроцилиндры, поддерживающие стабилизаторы («аутригеры»): опоры, которые выступают возле колес для поддержки крана у основания, когда стрела выдвинута (они выделены желтыми и черными предупреждающими полосами).

Нельзя раздавить жидкость!

Газы легко раздавить: все знают, как легко это сжать воздушный шар.Твердые тела прямо противоположны. Если вы когда-нибудь пытались сжать кусок металла или кусок дерево, только пальцами, вы поймете, что это практически невозможно. А как насчет жидкостей? Где они вписываются? Вы, наверное, знаете, что жидкости промежуточное состояние, немного похоже на твердые тела и немного на газы в других. Теперь, когда жидкости легко перетекают с места на место, вы можете подумать, что они будут вести себя как газы, когда вы устанете их сжимать. Фактически, жидкости практически несжимаемы, как и твердые тела.По этой причине болит живот, если вы испортили свое погружение в бассейн. Когда ваше тело врезается в бассейн, это потому, что вода не может стекать вниз (как матрас или батут будет) или достаточно быстро уйти с дороги. Вот почему прыжки с мостов в реки может быть очень опасно. Если вы не нырнете правильно, прыжки с моста в воду почти как на бетон. (Узнайте больше о твердых телах, жидкостях и газах.)

Фото: Почему вода так быстро брызгает из шприца? Вы вообще не можете сжать жидкость, поэтому, если вы протолкните воду через широкую часть шприца, сильно надавив на поршень внизу, куда эта вода пойдет? Он должен выбраться через верх.Поскольку верх намного уже низа, вода выходит из него высокоскоростной струей. Гидравлика запускает этот процесс в обратном порядке, чтобы обеспечить более низкую скорость, но большую силу, которая используется для привода тяжелых машин. То же самое и с водяным пистолетом, который фактически представляет собой шприц в форме пистолета.

Тот факт, что жидкости не сжимаются легко, невероятно полезно. Если вы когда-нибудь стреляли из водяного пистолета (или бутылка с жидкостью для мытья посуды, наполненная водой), вы использовали эту идею уже.Вы, наверное, заметили, что нажимать спусковой крючок водного пистолета (или выжать воду из посуды для мытья посуды бутылка). Когда вы нажимаете на спусковой крючок (или сжимаете бутылку), вы приходится довольно много работать, чтобы вытеснить воду через узкую сопло. Вы действительно оказываете давление на воду - и поэтому он брызгает с гораздо большей скоростью, чем вы двигаете вызывать. Если бы вода не была несжимаемой, водяные пистолеты не работали бы должным образом. Вы нажмете на спусковой крючок, и вода внутри просто сжать в меньшее пространство - он не вылетит из сопла, как вы ожидали.

Если водяные пистолеты (и сжимаемые бутылки) могут изменять силу и скорость, это означает (в строгих научных терминах) они работают так же, как инструменты и машины. Фактически, наука о водяных пистолетах используется в некоторых из самых больших машин в мире - кранах, самосвалах и экскаваторах.

Теоретическая гидравлика

Переверните водяной пистолет, и это (грубо упрощено) что происходит внутри:


Фото: упрощенный вид гидравлической воды. пистолет.

Когда вы нажимаете на спусковой крючок (показанный красным), вы применяете относительно большая сила, которая перемещает спусковой крючок на небольшое расстояние. Потому что вода не будет втиснуться в меньшее пространство, он проталкивается через тело пистолет к узкой насадке и выстреливает с меньшей силой, но с большей скорость.

Теперь предположим, что мы можем заставить водяной пистолет работать в обратном направлении. Если мы могли стрелять жидкостью в сопло на большой скорости, вода течь в обратном направлении, и мы сгенерируем большое усилие, направленное вверх на спусковой крючок.Если бы мы увеличили масштаб нашего водяного пистолета много раз мы мог генерировать достаточно большую силу, чтобы поднимать предметы. Именно так гидроцилиндр или домкрат. Если вы брызгаете жидкость через узкую трубки на одном конце, вы можете заставить поршень подниматься медленно, но с большим силы, на другом конце:


Фото: Как увеличить силу с помощью водяного пистолета работает в обратном направлении.

Наука, лежащая в основе гидравлики, называется Паскаля. принцип . По сути, потому что жидкость в трубе несжимаемый, давление должно оставаться постоянным на всем протяжении его, даже когда вы сильно нажимаете на него с одного или другого конца.Теперь давление определяется как сила, действующая на единицу площади. Итак, если мы надавим с небольшим усилием на небольшом участке, на узком конце трубки на слева, должна быть большая сила, действующая вверх на большую поршень справа, чтобы давление оставалось равным. Вот как сила увеличивается.

А как насчет энергии?

Другой способ понять гидравлику - подумать о энергии .

Мы уже видели, что гидроцилиндры могут дать нам больше силы или скорости, но они не могут делать и то, и другое одновременно - и это из-за энергии.Посмотрите еще раз на изображение водяного пистолета вверху. Если быстро надавить на узкую трубу (с небольшим усилием), поршень на широкой трубе поднимается медленно (с большой силой). Почему это могло быть? Основной закон физики называется закон сохранения энергии гласит, что мы не может сделать энергию из воздуха. Количество энергии, которое вы используете для перемещения поршня. равна приложенной вами силе, умноженной на расстояние, на которое вы ее перемещаете. Если наш водяной пистолет производит вдвое большую силу на широком конце, чем мы прилагаем к узкому концу, он может только продвиньтесь наполовину.Это потому, что энергия, которую мы доставляем, нажимая вниз, переносится прямо вокруг трубы до другого конца. Если то же количество энергии теперь должно двигаться вдвое больше силы, он может переместить его только на половину расстояния за то же время. Вот почему более широкий конец движется медленнее чем узкий конец.

Гидравлика на практике

Вы можете увидеть работу гидравлики этого экскаватора. Когда водитель тянет за ручку, двигатель экскаватора закачивает жидкость в узкие трубы и кабели (показаны синим), заставляющие гидроцилиндры (показаны красным) для расширения.Тараны немного похожи на велосипедные насосы, работающие в обеспечить регресс. Если сложить несколько таранов, можно сделать рука вытягивается и двигается так же, как у человека, только с гораздо большим сила. Гидравлические цилиндры - это мускулы экскаватора:


Фото: В этом экскаваторе работают несколько различных гидроцилиндров. Тараны обозначены красными стрелками. и узкие, гибкие гидравлические трубы и кабели, которые питают их синим цветом.

Каждый поршень работает как водяной пистолет с дизельным двигателем, задним ходом:


Фото: Гидравлические цилиндры экскаватора крупным планом.

Двигатель прокачивает гидравлическую жидкость через одну из тонких трубок, чтобы вывести более толстый плунжер с гораздо большей силой, например:


Фото: Как гидроцилиндр увеличивает силу.

Вам может быть интересно, как гидроцилиндр может перемещаться как внутрь, так и наружу, если гидравлическая жидкость всегда толкает его в одном направлении. Ответ в том, что жидкость не всегда движется одинаково. Каждый ползун питается с противоположных сторон по двум отдельным трубам. В зависимости от того, как движется жидкость, плунжер толкает внутрь или наружу, очень медленно и плавно, как показывает эта небольшая анимация:


Фото: Гидравлический цилиндр движется внутрь или наружу в зависимости от того, в каком направлении течет гидравлическая жидкость.

В следующий раз, когда вы будете в пути, посмотрите, сколько гидравлических машин вы заметите. Вы можете быть удивлены, сколько ими пользуются грузовики, краны, экскаваторы, самосвалы, экскаваторы, бульдозеры. Другой пример: гидравлический кусторез на задней части трактора. Режущая головка должна быть прочной и тяжелой, чтобы прорезать живую изгородь и деревья, и водитель не может поднять или установить ее вручную. К счастью, гидравлическое управление делает все это автоматически: с несколькими гидравлическими соединениями, немного похожими на плечо, локоть и запястье, резак движется с такой же гибкостью, как человеческая рука:


Фото: Типичный гидравлический кусторез.

Скрытая гидравлика

Однако не все гидравлические машины настолько очевидны; иногда их гидроцилиндры скрыты от глаз. Лифты («лифты») хорошо скрывают свою работу, поэтому не всегда очевидно, работают ли они традиционным способом (поднимаются и опускаются кабелем, прикрепленным к двигателю) или вместо этого используют гидравлику. В небольших лифтах часто используются простые гидроцилиндры, устанавливаемые непосредственно под лифтовой шахтой или рядом с ней. Они проще и дешевле традиционных лифтов, но могут потреблять немного больше энергии.

Двигатели - еще один пример, когда гидравлику можно скрыть от глаз. Традиционный электродвигатели используют электромагнетизм: когда электрический ток течет через катушки внутри них, он создает временную магнитную силу, которая толкает кольцо постоянных магнитов, заставляя вал двигателя вращаться. Гидравлические моторы больше похожи на насосы, работающие реверсом. В одном примере, называемом гидравлическим редукторным двигателем, жидкость течет в двигатель по трубе, заставляя вращаться пару тесно сцепленных шестерен, прежде чем течь обратно через другую трубу.Одна из шестерен соединена с валом двигателя, который приводит в движение все, что двигатель запитывает, в то время как другая («холостой ход») просто свободно вращается, чтобы завершить механизм. Там, где традиционный гидроцилиндр использует силу перекачиваемой жидкости для толкания гидроцилиндра вперед и назад на ограниченное расстояние, гидравлический двигатель использует непрерывно текущую жидкость для вращения вала столько, сколько необходимо. Если вы хотите, чтобы двигатель вращался в обратном направлении, вы просто меняете направление потока жидкости. Если вы хотите, чтобы он вращался быстрее или медленнее, вы увеличиваете или уменьшаете поток жидкости.

Рисунок: упрощенный гидравлический мотор-редуктор. Жидкость (желтая) втекает слева, вращает две шестерни и вытекает вправо. Одна из шестерен (красная) приводит в действие выходной вал (черный) и машину, к которой подключен двигатель. Другая шестерня (синяя) - холостой ход.

Зачем использовать гидравлический мотор вместо электрического? Там, где мощный электродвигатель обычно должен быть действительно большим, такой же мощный гидравлический двигатель может быть меньше и компактнее, потому что он получает свою мощность от насоса на некотором расстоянии.Вы также можете использовать гидравлические двигатели в местах, где электричество может быть нежизнеспособным или безопасным - например, под водой, или где существует риск возникновения электрических искр, вызывающих пожар или взрыв. (Другой вариант в этом случае - использовать пневматику - силу сжатого воздуха.)

Узнать больше

На этом сайте

Книги

Для младших читателей

Особенно подходят для детей 9–12 лет:

  • Можете ли вы почувствовать силу? Ричарда Хаммонда.Дорлинг Киндерсли, 2007/2015. Веселое введение в основы физики. (Я был одним из консультантов по этой книге.)
  • Сила и движение Питера Лафферти. Дорлинг Киндерсли, 2000. Хотя сейчас он довольно старый и, кажется, не обновлялся, его все еще легко найти в секонд-хенде. Одна из классических книг DK очевидцев, в ней много увлекательной истории, а также современной науки.
  • «Как все работает сейчас» Дэвида Маколея. ДК, 2016. Многие гидравлические машины разбираются и объясняются в этом классическом томе о принципах работы.
  • Как все работает: сила давления Эндрю Данн. Thomson Learning, 1993. Слегка устаревшая, но все же очень актуальная детская книга, которая связывает фундаментальные науки о жидкостях и давлении воды с такими повседневными машинами, как суда на воздушной подушке, пылесосы, отбойные молотки, автомобильные тормоза и лифты.
Для старших читателей

Видео

Информационное
  • Гидравлические приводы от Vickers Hydraulics. Устаревшее, но достаточно четкое видео, в котором объясняются основные гидравлические приводы, включая гидроцилиндры одинарного и двойного действия и гидравлические двигатели.
Веселые проекты
  • Сделайте гидравлический рычаг от Mist8K. Гидравлический рычаг с приводом от шприца и электромагнитным захватом.
  • «Как сделать гидравлических боевых роботов», Лэнс Акияма. Один из проектов, описанных в книге Лэнса Rubber Band Engineer.
  • Принцип работы гидравлического ножничного подъемника от DRHydraulics. Это довольно наглядная анимация, показывающая, как гидравлический насос заставляет лифт подниматься и опускаться. Было бы лучше, если бы мы могли видеть разрез цилиндра и то, как течет жидкость, но вы поняли идею.

Статьи

  • Посмотрите, как робот HyQReal тянет самолет. Автор Эван Акерман. IEEE Spectrum, 23 мая 2019 г. Возможно, роботы в основном электромеханические, но гидравлические компоненты становятся все более популярными.
  • Робот Disney с приводами «воздух-вода» демонстрирует «очень плавные» движения Эрико Гуиццо. IEEE Spectrum, 1 сентября 2016 г. Изучение робота, в котором используется сочетание гидравлики и пневматики.
  • Hydraulics может включать полноэкранный дисплей Брайля от Прии Ганапати.Wired, 30 марта 2010 г. Новый гидравлический механизм может сделать дисплеи Брайля дешевле, быстрее и доступнее.
  • Давление в гидравлике: Инженер, 24 февраля 2003 г. Почему гидравлика до сих пор остается таким популярным способом питания машин, когда электрическая энергия, на первый взгляд, проще и легче реализовать?
.

Как работают велосипеды | HowStuffWorks

Идея, лежащая в основе нескольких передач на велосипеде - будь то старый «10-скоростной» велосипед или современный горный велосипед с 24 передачами - состоит в том, чтобы позволить вам изменять расстояние, на которое велосипед движется вперед с каждым нажатием педали. Например, у нормального велосипеда колеса диаметром 26 дюймов. Наименьшее передаточное число на велосипеде может быть передним цепным колесом с 22 зубьями и задним колесом с 30 зубцами. Это означает, что передаточное число составляет 0,73: 1.За каждый ход педали заднее колесо поворачивается 0,73 раза. Другими словами, за каждый ход педали велосипед движется вперед примерно на 60 дюймов (около 3,4 миль / ч / 5,4 км / ч при скорости вращения педалей 60 об / мин). «Наивысшее» передаточное число на велосипеде может быть передним цепным колесом с 44 зубцами и задним колесом с 11 зубьями. Таким образом создается передаточное число 4: 1. С 26-дюймовыми колесами байк продвигается на 326 дюймов при каждом нажатии педали. При скорости вращения педалей 60 об / мин скорость велосипеда составляет 18,5 миль / ч (30 км / ч). Удвоив скорость вращения педалей до 120 об / мин, велосипед развивает максимальную скорость 37 миль в час (60 км / ч).Диапазон от 3,4 до 37 миль в час - это фантастика, и он позволяет гонщику очень медленно подниматься на самый крутой холм или гонять почти так же быстро, как автомобиль! Вот почему у велосипеда есть шестерни.

Передние шестерни называются цепными колесами . У большинства велосипедов есть два или три цепных колеса, которые выглядят так:


К заднему колесу прикреплено колесо свободного хода , которое выглядит так:


Обгонная муфта имеет от пяти до девяти передач, в зависимости от мотоцикла.Обгонная муфта свободно вращается в одном направлении и блокируется в другом. Это позволяет водителю либо крутить педали, либо не крутить педали - когда он не крутит педали, байк проходит мимо (еще одна особенность, которой не хватает трехколесным велосипедам и велосипедам за копейки).

Для переключения передач велосипед имеет передних и задних переключателей . Вот снимок заднего переключателя:


На заднем переключателе есть две маленькие винтики, которые обе свободно вращаются.Назначение рычага и нижней шестерни переключателя - натяжение цепи. Шестерня и рычаг связаны с пружиной, так что зубец всегда тянет назад. Когда вы переключаете передачи, вы заметите, что угол рычага изменяется, чтобы принимать или отпускать слабину:


Верхняя шестерня находится очень близко к муфте свободного хода. Когда вы регулируете передачи с помощью рычага на руле, этот зубец перемещается в другое положение на муфте свободного хода и тянет за собой цепь.


Цепь естественным образом переключается с одной передачи на другую, когда вы поворачиваете педали.

В велосипеде все просто. Вот что делает эту машину отличной для езды - а также прекрасным механическим произведением искусства! Для получения дополнительной информации о велосипедах и связанных темах просмотрите ссылки на следующей странице.

Объявление

.

Велосипедная наука - как работают велосипеды и лежащая в их основе физика

Криса Вудфорда. Последнее изменение: 18 августа 2019 г.

Если бы вам нужно было выбрать лучшую машину за все время, что бы вы сказали? Если бы мы говорили о машинах, которые помогли распространять знания и обучать людей, вы, вероятно, выберете печатная пресса. Если мы имели в виду изобретения, которые позволяют людям обрабатывать землю и кормить свои семьи, вы могли бы заплатить за плуг или трактор. Если вы считаете, что транспорт действительно важен, вы можете выбрать автомобильный двигатель, паровой двигатель или реактивный двигатель самолета.Но для его чистоты простота, думаю, я бы выбрал велосипед . Это прекрасный пример того, как чисто, научные идеи можно использовать в очень практичном технологии. Давайте посмотрим на науку о циклах - и просто что делает их такими замечательными!

На фото: велосипед - гениально простая форма транспорт, где бы вы ни находились. Что-то вроде 130 миллионов новых велосипедов производятся во всем мире каждый год, и более 90 процентов из них в настоящее время производится в Китае.Фото Роджера С. Дункана любезно предоставлено ВМС США.

Что такого хорошего в велосипедах?

Диаграмма: Сравнение эффективности повседневных машин (приблизительные, ориентировочные значения, выраженные в процентах). За исключением велосипеда, новые технологии (например, дизельные двигатели) обычно более эффективны, чем старые технологии (например, паровые двигатели).

Что так хорошо, так это то, что они быстро доставят вас в места, не поглощая ископаемые виды топлива, такие как бензин, дизельное топливо и уголь, или загрязнение.Они делают это, потому что очень эффективно преобразуют энергию, производимую нашим телом, в кинетической энергии (энергии движения). Фактически, как вы можете видеть из диаграммы напротив, это самые эффективные транспортные машины, разработанные людьми. Используя силу ваших мышц удивительно эффективным способом, велосипед может преобразовать около 90 процентов энергии, которую вы подаете на педали, в кинетическую энергию, которая движет вас вперед. Сравните это с автомобильным двигателем, который преобразует лишь около четверти энергии бензина в полезную мощность - и при этом производит все виды загрязнения.

Посмотрите на это так: если вы ведете машину, куда бы вы ни пошли, вы тащите кусок металла, который, вероятно, весит в 10–20 раз больше, чем вы (типичный компактный автомобиль весит более 1000 кг или 2000 фунтов). Какая трата энергии! Ездите на велосипеде, и металл, который вам нужно перемещать с собой, больше равен 6–9 кг (14–20 фунтов) для легкого гоночного велосипеда или 11–20 кг (25–45 фунтов) для горного велосипеда или туриста, что составляет или вашего собственного веса.

Более высокая эффективность означает, что вы можете ехать дальше на том же количестве топлива, что является еще одним большим преимуществом велосипедов, хотя его трудно измерить количественно.Согласно классической книге «Велосипедная наука» Дэвида Гордона Уилсона и др .: «Гоночный велосипедист со скоростью 32 км / ч (20 миль в час) мог бы проехать более 574 километров на литр (1350 миль на галлон США), если бы была жидкая пища с энергетическим содержанием бензина ". Как ни крути, байки просто потрясающие!

Куда уходит ваша энергия?

Мы описали велосипед как машину, и с научной точки зрения это именно то, что это: устройство, которое может увеличивать силу (облегчая идти в гору) или скорость.Это также машина в том смысле, что она преобразует энергию из одной формы (все, что вы ели) в другой (кинетическая энергия вашего тела и велосипеда, когда они едут). Вы, наверное, слышали о законе физики, называемом сохранение энергии, которое говорит, что вы не можете создать энергию из воздуха или заставить ее бесследно исчезнуть: все, что вы можете сделать - это преобразовать его из одного в другое. Так где же энергия вы на велосипеде ездите? В научных терминах мы говорим, что это означает «выполнение работы» - но что это означает на практике?

Езда на велосипеде иногда может казаться тяжелой работой, особенно если вы едете в гору.В науке о велоспорте "тяжелая работа" означает, что вам иногда приходится использовать довольно много силы крутить педали на любом расстоянии. Если вы идете в гору, вам нужно работать против сила тяжести . Если вы идете быстро, вы работаете против силы сопротивление воздуха (сопротивление) давит на ваше тело. Иногда бывают неровностей; на дороге, по которой нужно проехать; это требует больше силы и использует энергия тоже (неровности уменьшают вашу кинетическую энергию, уменьшая вашу скорость).

Фото: Велосипеды так хорошо работают с человеческим телом, потому что они используют силу наших больших и очень мощных мышц ног. Лежачие велосипеды (на которых вы ездите лежа) могут выглядеть ультрасовременными и немного странными, но им уже не менее 100 лет. Они быстрее, чем обычные велосипеды, потому что их водители принимают гораздо более аэродинамическую позу, напоминающую трубу, которая сводит к минимуму сопротивление. Поскольку педали находятся выше над землей, шатуны могут быть длиннее, поэтому вы получаете больше рычагов, ваши мышцы могут дольше работать с высокой мощностью и делать это более эффективно.Фото Робина Хиллер-Майлза любезно предоставлено ВМС США.

Но идете ли вы в гору или под гору, быстро или медленно, по ровной дороге или ухабистый, есть другая работа, которую всегда нужно делать просто чтобы ваши колеса вращались. Когда колесо стоит на земле, выдерживая нагрузку, например, велосипедиста, шина, обернутая вокруг него, в одних местах раздавлены, в других выпячиваются. По мере того, как вы едете по кругу, разные части шины сжимаются и выпирают по очереди, а резина, из которой они сделаны, тянется и толкается во всех направлениях.Многократно сдавливать шину таким способом немного похоже на замешивание хлеба: для этого требуется энергия - и эта энергия известна как сопротивление качению . Чем больше нагрузка на шину (чем вы тяжелее или больше несете), тем выше сопротивление качению.

Для гоночного велосипеда, движущегося быстро, около 80 процентов работы велосипедиста будет уходить на преодоление сопротивления воздуха, а оставшаяся часть будет использована на борьбу с сопротивлением качению; для маунтинбайкера намного медленнее на пересеченной местности, 80 процентов их энергии уходит на сопротивление качению и только 20 процентов теряется на перетаскивание.

Диаграмма: Медленные горные велосипеды тратят большую часть энергии из-за сопротивления качению; более быстрые гоночные велосипеды тратят больше из-за сопротивления воздуха.

О каком количестве энергии мы на самом деле говорим? В Тур де Франс, по мнению увлекательный Анализ, проведенный Training Peaks, показал, что лучшие райдеры имеют в среднем около 300–400 Вт мощности, что составляет примерно 3–4 старомодных 100-ваттных лампы или около 15% мощности, необходимой для работы электрического чайника. Для сравнения, вы можете генерировать около 10 Вт с помощью ручного генератора электроэнергии, хотя Вы не можете использовать один из них очень долго, не уставая.Что это говорит нам? Намного легче генерировать большое количество энергии в течение длительного времени, используя большие мышцы ног, чем используя руками и руками. Вот почему велосипеды такие умные: в них используются самые мощные мышцы нашего тела.

Как работает рама велосипеда

Если вес взрослого составляет 60–80 кг (130–180 фунтов), рама велосипеда должна быть достаточно жесткой, если она не защелкните или пристегните в тот момент, когда всадник поднимается на борт. Обыкновенный велосипеды имеют рамы из прочной, недорогой трубчатой ​​стали (буквально, полые стальные трубы, содержащие только воздух) или более легкие сплавы на основе стали или алюминия.Гоночные велосипеды, скорее всего, будут сделаны из композитов с углеродным волокном, которые дороже, но прочнее, легче и устойчивы к ржавчине.

Фото: перевернутая А-образная рама велосипеда - это невероятно прочная структура, помогающая распределять ваш вес между передними и задними колесами. Это помогает наклониться вперед или даже встать, когда вы идете в гору, поэтому вы можете применить максимум нажимайте на педали и сохраняйте равновесие.

Вы могли подумать, что рама велосипеда из алюминиевых трубок будет намного слабее. чем тот, что сделан из стали, но только если трубы аналогичны по размеру.На практике каждый велосипед должен быть достаточно прочным, чтобы выдерживать вес гонщика. и нагрузки, которые могут возникнуть при различных видах обращения. Таким образом, алюминиевый велосипед будет использовать трубки с большим диаметром и / или более толстыми стенками. чем велосипед из стальных труб.

Оправа не просто поддерживает вас: ее треугольная форма (часто два треугольника соединяются вместе, образуя ромб) тщательно разработан для распространять твой вес. Хотя седло расположено гораздо ближе к спине руль, вы наклоняетесь вперед, чтобы держаться за руль.Угловой стержни в раме предназначены для более или менее разделять ваш вес равномерно между передними и задними колесами. Если вы думаете об этом, это действительно важно. Если весь ваш вес переместился через спину колесо, и вы пытались крутить педали в гору, вы опрокидывались назад; по аналогии, если бы на переднее колесо было слишком много веса, вы бы свалились каблуки каждый раз, когда ты спускался с горы!

Рамы не рассчитаны на стопроцентную жесткость: это сделает езду гораздо менее комфортной. Практически все велосипедные рамы немного изгибаются и изгибаются, поэтому они поглощают некоторые удары. езды, хотя другие факторы (например, седло и шины) имеют гораздо большее влияние по комфорту езды.Также стоит помнить, что человеческое тело само по себе замечательно эффективная система подвески; катаясь на горном велосипеде по пересеченной местности, вы очень быстро станете знать, как ваши руки могут работать как амортизаторы! Действительно, может быть весьма поучительно посмотреть на тело как продолжение (или дополнение) базовой рамы велосипеда, сбалансированное на ней.

Как работают велосипедные колеса

Фото: Как и автомобильное колесо, велосипедное колесо - это умножитель скорости.В педали и шестерни поворачивают ось по центру. Ось поворачивается только небольшое расстояние, но рычаг колеса означает внешний обод поворачивается намного дальше за то же время. Вот как колесо помогает идти быстрее.

Если вы читали нашу статью о том, как работают колеса, вы знаете, что колесо и ось, которую оно вращает, - это пример того, что ученые называют простым машина: она умножает силу или скорость в зависимости от того, как вы ее поворачиваете. Велосипед колеса обычно имеют диаметр более 50 см (20 дюймов), что составляет выше, чем у большинства автомобильных колес.Чем выше колеса, тем больше они умножьте свою скорость, когда вы поворачиваете их на оси. Вот почему у гоночных велосипедов самые высокие колеса (обычно диаметром около 70 см или 27,5 дюймов).

Колеса в конечном итоге выдерживают весь ваш вес, но очень интересным образом. Если бы колеса были твердыми, они бы сжались (сжались), когда вы сели на сиденье, и отталкивается, чтобы поддержать вас. Однако колеса у большинства мотоциклов на самом деле состоит из прочной ступицы, тонкого обода и около 24 спиц с высоким натяжением.Велосипеды имеют колеса со спицами, а не цельнометаллические, чтобы сделать их прочными и легкими, а также уменьшить сопротивление. (некоторые райдеры используют плоские «лопастные» спицы или спицы овальной формы вместо традиционных округлых спиц в попытке чтобы сократить сопротивление еще больше).

Важно не только количество спиц, но и способ их подключения между ободом и его ступицей. Как нити паутины или свисающие веревки подвесного моста, велосипедное колесо находится в напряжении - спицы натянуты.Так как спицы перекрещиваются с обода на противоположной стороне ступицы колесо не такое плоское и хлипкое, как кажется, но на самом деле удивительно прочная трехмерная структура. Когда вы садитесь на велосипед, ваш вес давит на ступицы, которые растягивают одни спицы немного больше, а другие - немного меньше. Если вы весите 60 кг (130 фунтов), вам придется толкать около 30 кг (130 фунтов). вниз на каждое колесо (не считая собственного веса велосипеда), а спицы - это то, что предотвращает коробление колес.

Фото: Несмотря на внешний вид, велосипедное колесо не является ни плоским, ни слабым.Ступица намного шире шины, спицы натянуты и перекрещиваются, соединяясь со ступицей по касательной. Все это создает жесткую трехмерную структуру, которая может противостоять скручиванию, короблению и изгибу. Фото Дэвида Даналса любезно предоставлено ВМС США.

Поскольку каждое колесо имеет пару дюжин спиц, вы можете подумать, что каждая спица должна выдерживать только часть общего веса - может быть, всего 1-2 кг (2,2-4,4 фунта), если спиц 30, что может сделать легко. На самом деле, спицы несут нагрузку неравномерно: несколько спиц, которые находятся около вертикали, несут гораздо большую нагрузку, чем другие.(Среди велосипедистов до сих пор ведутся споры о том, как на самом деле воспринимается нагрузка, и лучше ли представить себе велосипед, висящий на спицах вверху или давящий на спицы внизу.) Как колесо вращается. другие спицы перемещаются ближе к вертикали и начинают нести большую долю нагрузки. Нагрузка на каждую спицу резко возрастает и падает во время каждого вращения колеса, поэтому, в конце концов, после многих тысяч циклов повторяющихся напряжений и деформаций, во время которых каждая спица быстро растягивается и расслабляется, одна из спиц (или ее соединение с колесо или ступица) может выйти из строя из-за усталости металла.Это мгновенно и резко увеличивает нагрузку на оставшиеся спицы, повышая вероятность их выхода из строя и вызывая своего рода эффект «домино», из-за которого колесо прогибается.

Как работают велосипедные передачи

Фото: Шестерня - это пара колес с зубья, которые сцепляются друг с другом для увеличения мощности или скорости. В велосипеде пара шестерен не приводится в движение напрямую, а связана цепь. На одном конце цепь постоянно обвивается вокруг главной шестерни. (между педалями).С другой стороны, он переключается между серией больших или меньших зубчатые колеса при переключении передач.

Типичный велосипед имеет от трех до тридцать различных шестерен - колеса с зубьями, связаны цепью, что делает машину быстрее (по прямой) или легче крутить педали (идти в гору). Колеса большего размера также помогают ехать быстрее по прямой, но это большой недостаток, когда дело касается холмов. Это одна из причин, почему горные велосипеды и велосипеды BMX имеют меньшие колеса, чем гоночные велосипеды.Не только шестерни на велосипеде помогают увеличьте мощность педалирования, когда вы идете в гору: педали крепится к главной шестерне парой шатуны: два коротких рычага которые также увеличивают силу, которую вы можете приложить ногами.

Шестерни могут существенно повлиять на вашу скорость. На типичном гоночный велосипед, например, передаточное число (количество зубьев на педальном колесе, деленное на количество зубцов на тыльной стороне колесо) может составлять 5: 1, поэтому одно нажатие педалей приводит в движение вы примерно в 10 м (35 футов) вниз по улице.Предполагая, что вы можете перемещать только ноги так быстро, вы можете видеть, что шестерни эффективно заставляют вас идти быстрее, помогая вам продвигаться дальше при каждом повороте педалей.

Подробнее читайте в нашей основной статье о шестеренках.

Изображение: Велосипеды до передач: Ранние велосипеды, подобные этим (известные как «Пенни Фартингс» или «Высокие колеса») у него было огромное переднее колесо, которое эффективно увеличивало вашу скорость и позволяло очень быстро ехать по прямой. Шестерен не было: переднее колесо крутилось один раз, когда ноги толкали вверх-вниз на рукоятках (педалях).Спускаться под гору было довольно сложно (если не снимать ногу с шатунов), а в гору - практически невозможно! Фрагмент оригинальной картины Генри «Хай» Сэндхэма 1887 года, любезно предоставлено Библиотекой Конгресса США.

Как работают велосипедные тормоза

Фото: Ободные тормоза: Резиновые колодки (колодки) тормозов этого велосипеда зажимают металлический обод колеса, чтобы замедлить вас. Когда вы теряете скорость, вы теряете энергию. Куда уходит энергия? Он превращается в тепло: тормозные колодки могут быть невероятно горячими!

Как бы быстро вы ни двигались, наступает время, когда Вы должны остановить.Тормоза на велосипеде работают с использованием трения ( сила трения между двумя предметами, которые скользят друг мимо друга, пока они трогают). Хотя некоторые велосипеды теперь имеют дисковые тормоза (аналогичные те, которые используют автомобили), с отдельными тормозными дисками, прикрепленными к колесам, многие до сих пор используют традиционные ободные тормоза с суппортом и башмаками.

При нажатии на тормозные рычаги пара резиновых туфли (иногда называемые блоками) прижимаются к металлическому внутреннему ободу спереди и сзади колеса. Поскольку тормозные колодки плотно трутся о колеса, они поворачиваются. ваша кинетическая энергия (энергия, которую вы имеете потому что ты идешь вместе) в тепло, что замедляет вас.Подробнее об этом читайте в нашей основной статье о тормозах.

Ободные тормоза в сравнении с дисковыми тормозами

Ободные тормоза с приводом от суппорта нажимают на внешний край колеса, где оно вращается быстрее всего, но с наименьшей силой. Это означает, что им требуется относительно небольшое тормозное усилие, чтобы замедлить движение. колеса (поэтому они могут быть маленькими и легкими), хотя вам все равно придется сильно нажимать, и вам придется прикладывать эту силу дольше, чтобы заставить себя и свой велосипед остановиться. Одним из больших недостатков ободных тормозов является то, что они полностью подвергаются воздействию дождя сверху и сбоку и брызг с колес; если тормозные колодки и колеса мокрые и грязные, есть значительная смазка, трение между тормозами и колесами может быть до десяти раз меньше, чем в засушливых условиях (по данным Дэвида Гордона Уилсона Велосипедная наука), и ваш тормозной путь будет намного больше.

Дисковые тормоза

работают ближе к ступице, поэтому им необходимо применять большее тормозное усилие, которое может вызвать нагрузку на вилки и спицы, и они оба тяжелее (что может повлиять на управляемость велосипеда) и механически сложнее, но они имеют тенденцию быть более эффективным в сырую погоду и в грязь.

Просмотрите интернет-форумы о велосипедах, и вы найдете самые разные мнения о том, какой тип тормозов лучше всего подходит для разных типов велосипедов, местности и погодных условий. Некоторым людям нравятся дисковые тормоза, потому что они делают велосипед лучше; другим нравятся ободные тормоза, потому что они такие простые и понятные.

Рисунок: Тормоза дисковые (упрощенные). Когда вы нажимаете тормозной рычаг, трос или гидравлическая линия (желтый) воздействуют на суппорты (синие), которые прижимают тормозные колодки к диску, который называется ротором (красный), прикрепленным к колесу. Поскольку суппорты прикреплены к одной из вилок (серые), а тормозная сила должна проходить через спицы (черные), чтобы остановить колесо, дисковые тормоза подвергают вилки и спицы гораздо большей нагрузке, чем ободные тормоза.

Как работают велосипедные шины

Трение между резиновыми шинами также работает в вашу пользу. и дорога, по которой вы едете: это дает вам сцепление, которое делает ваш велосипед легче контролировать, особенно во влажные дни.

Как и автомобильные шины, велосипедные шины не сделаны из цельной резины: они имеют внутренняя трубка заполнена сжатым (сжатым) воздухом. Это означает, что они легче и более упругий, что обеспечивает более комфортную езду. Пневматические шины, как их называют, были запатентованы в 1888 году шотландской изобретатель Джон Бойд Данлоп.

У разных видов велосипедов разные шины. Гоночные велосипеды имеют узкие гладкие шины, рассчитанные на максимальную скорость. (хотя их "тонкий" профиль дает им более высокое сопротивление качению), а у горных велосипедов есть более толстые и прочные шины с более глубоким протектором, большим контактом резины с дорогой и лучшим сцеплением (хотя, будучи шире, они создают большее сопротивление воздуха).

Почему одежда имеет значение

Трение - отличная вещь для тормозов и шин, но это менее приветствуется в другой форме: как сопротивление воздуха, которое замедляет вас. Чем быстрее вы идете, тем больше сопротивление становится проблема. На высоких скоростях гонка на велосипеде похожа на плавание через воду: вы действительно можете почувствовать, как воздух толкает вас и (как мы уже видели) вы тратите около 80 процентов своей энергии на преодоление сопротивления. Теперь велосипед хорош тонкий и обтекаемый, но тело велосипедиста намного толще и шире.На практике тело велосипедиста создает вдвое больше сопротивления, чем их велосипед. Вот почему велосипедисты носят обтягивающую одежду из неопрена и заостренные шлемы для оптимизации и минимизации потерь энергии.

Фото: Гоночные велосипеды имеют два комплекта руля. Внутренний руль позвольте всадникам уменьшить сопротивление воздуха, прижав локти ближе друг к другу. Фото Бена А. Гонсалеса любезно предоставлено ВМС США.

Вы могли не заметить, но рули велосипеда - это рычаги. тоже: более длинный руль обеспечивает рычаг, облегчающий поворот переднее колесо.Но чем шире вы расставляете руки, тем большее сопротивление воздуха вы создаете. Вот почему у гоночных велосипедов есть два набора рулей, чтобы велосипедист занимает лучшую, наиболее обтекаемую позу. Есть обычные, внешний руль для рулевого управления и внутренний для удержания за Прямо. Использование этих внутренних рулей заставляет руки велосипедиста гораздо более плотное и обтекаемое положение. Большинство велосипедистов теперь носят шлемы как из соображений безопасности, так и из соображений безопасности. аэродинамика.

Велосипеды - это физика в действии

Давайте кратко подведем итог с помощью простой диаграммы, которая показывает все эти различные элементы науки о циклах в действии:

.

Как работают велосипеды | HowStuffWorks

Идея, лежащая в основе нескольких передач на велосипеде - будь то старый «10-скоростной» велосипед или современный горный велосипед с 24 передачами - состоит в том, чтобы позволить вам изменять расстояние, на которое велосипед движется вперед с каждым нажатием педали. Например, у нормального велосипеда колеса диаметром 26 дюймов. Наименьшее передаточное число на велосипеде может быть передним цепным колесом с 22 зубьями и задним колесом с 30 зубцами. Это означает, что передаточное число составляет 0,73: 1.За каждый ход педали заднее колесо поворачивается 0,73 раза. Другими словами, за каждый ход педали велосипед движется вперед примерно на 60 дюймов (около 3,4 миль / ч / 5,4 км / ч при скорости вращения педалей 60 об / мин). «Наивысшее» передаточное число на велосипеде может быть передним цепным колесом с 44 зубцами и задним колесом с 11 зубьями. Таким образом создается передаточное число 4: 1. С 26-дюймовыми колесами байк продвигается на 326 дюймов при каждом нажатии педали. При скорости вращения педалей 60 об / мин скорость велосипеда составляет 18,5 миль / ч (30 км / ч). Удвоив скорость вращения педалей до 120 об / мин, велосипед развивает максимальную скорость 37 миль в час (60 км / ч).Диапазон от 3,4 до 37 миль в час - это фантастика, и он позволяет гонщику очень медленно подниматься на самый крутой холм или гонять почти так же быстро, как автомобиль! Вот почему у велосипеда есть шестерни.

Передние шестерни называются цепными колесами . У большинства велосипедов есть два или три цепных колеса, которые выглядят так:


К заднему колесу прикреплено колесо свободного хода , которое выглядит так:


Обгонная муфта имеет от пяти до девяти передач, в зависимости от мотоцикла.Обгонная муфта свободно вращается в одном направлении и блокируется в другом. Это позволяет водителю либо крутить педали, либо не крутить педали - когда он не крутит педали, байк проходит мимо (еще одна особенность, которой не хватает трехколесным велосипедам и велосипедам за копейки).

Для переключения передач велосипед имеет передних и задних переключателей . Вот снимок заднего переключателя:


На заднем переключателе есть две маленькие винтики, которые обе свободно вращаются.Назначение рычага и нижней шестерни переключателя - натяжение цепи. Шестерня и рычаг связаны с пружиной, так что зубец всегда тянет назад. Когда вы переключаете передачи, вы заметите, что угол рычага изменяется, чтобы принимать или отпускать слабину:


Верхняя шестерня находится очень близко к муфте свободного хода. Когда вы регулируете передачи с помощью рычага на руле, этот зубец перемещается в другое положение на муфте свободного хода и тянет за собой цепь.


Цепь естественным образом переключается с одной передачи на другую, когда вы поворачиваете педали.

В велосипеде все просто. Вот что делает эту машину отличной для езды - а также прекрасным механическим произведением искусства! Для получения дополнительной информации о велосипедах и связанных темах просмотрите ссылки на следующей странице.

Объявление

.

Смотрите также

Возврат к списку