Отдел продаж
8 (499) 755-89-57
Лодки, запчасти
8 (499) 755-89-57

Пусковой конденсатор как проверить


Способ проверки пускового конденсатора

Пусковые конденсаторы обеспечивают надежную работу электродвигателей. Они забирают часть большой нагрузки, которая действует на мотор при запуске. Приборы могут выходить со строя. Обычно это сопровождается странным жужжанием при работе, к примеру, стиральной машины, отказом в запуске компрессора в кондиционере.

Заменяют пусковой конденсатор после проверки установленного прибора и выяснения, что он поломался и не работает. Проверять можно несколькими способами; все они требуют определенных навыков, так как при неправильном подсоединении можно получить травму.

На необходимость проверки, подбора и замены пускового конденсатора указывают разные неисправности. Это может быть пробой детали, высыхание электролита, ухудшение изоляции, что приводит к увеличению тока утечки. В перечне – короткое замыкание пластин.

Повреждения и непригодность конденсатора к работе можно определить при его внешнем осмотре. Можно провести электрическую проверку на ток утечки, пробой, короткое замыкание. Измеряют, применяя специальные приборы, емкость, целостность выводов.

Проверку, если емкость конденсатора свыше 1мкФ, можно выполнить с помощью омметра, щупы которого прислоняют к выводам детали. Конденсатор неисправен и требует замены в том случае, если стрелка омметра осталась на первоначальном значении и не опускается к нулю.

Пусковой конденсатор, емкость которого находится в диапазоне 0,5…1мкФ, на исправность можно проверить, подключив последовательно выводы источника тока и телефонов. В момент замыкания должен слышаться щелчок в наушниках. Если его нет – время менять радиодеталь.

Прибор с емкостью, не превышающей 500пФ, можно разместить в схеме между антенной и приемником. Если при подключении снижается громкость приемника, его нужно менять на новый. Такая ситуация указывает на обрыв выводов и нерабочее состояние пускового конденсатора.

Если конденсатор испорчен из-за короткого замыкания, то это можно узнать путем прозвонки, которую выполняют из лампочки и двух проводников. Вначале проверяемый прибор нужно зарядить. Затем прикасаются к его выводам свободными концами проводников. При рабочем его состоянии должна пробиться искра, разряжающая емкость. Если ее нет – значит радиодеталь неисправна и ее нужно заменить.

Как проверить конденсатор на болгарке мультиметром. Ремонт бытовых приборов. Как проверить пусковой конденсатор мультиметром.

Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь - шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.

Процесс проверки конденсатора

Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор - дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Проверка конденсатора

Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:

Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:

Мультиметр

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат - нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода - бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, можно представить, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению будет расти от нуля до бесконечности.

Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) - внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.

Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли - цепь разряда барахлит. Пусковой конденсатор авто - можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

Начинающие радиолюбители неоднократно задают вопрос, как проверить исправность конденсатора ? Этот важный элемент электрической цепи при неисправности может спровоцировать отказ всей схемы или заставить глючить один из ее узлов.

Как проверить исправность конденсатора?

В процессе проверки конденсатора желательно выпаять и визуально осмотреть радиокомпонент на наличия видимых дефектов:

  • вздутия, трещины;
  • почернения, следы гари;
  • вытекшего электролита.

Но, увы, конденсатор, который нормально выглядит, еще не является залогом того, что он полностью исправен.

Для более точной диагностики необходим мультиметр, желательно с возможностью проверки емкости конденсаторов. В таком устройстве необходимо всего лишь выбрать диапазон измерения необходимой емкости и подключить конденсатор в специальное гнездо (если оно имеется) или к щупам прибора.

На практике если показания мультиметра отличаются от номинала конденсатора +/-15% , можно считать такой конденсатор исправным. Подопытный наш образец имеет: 5,6 мкФ , показания прибора составляют: 5,8мкФ. Вердикт — конденсатор рабочий.

Как проверить электролитический конденсатор мультиметром?

Если функция измерения емкости не предусмотрена на вашем приборе, тогда простейшая проверка конденсатора мультиметром поможет выявить в нем замыкание, но потерю емкости измерить не получится. Для такой проверки необходимо мультиметр включить в режим измерения сопротивления и смотреть на показания индикатора. В первоначальный момент конденсатор накапливает заряд, и его сопротивление уменьшается, спустя определенное время сопротивление конденсатора начнет сильно увеличиваться.

По скорости изменения сопротивления субъективно можно судить о реальной емкости конденсатора.

Как проверить исправность конденсатора тестером?

Вышеописанные действия с легкостью можно повторять не только цифровым, но и стрелочным прибором, в котором отклонение стрелки будет визуально даже лучше видно. Диапазон измерений прибора лучше выставить в пределах 2МОм . Но данный метод проверки способен выявить работоспособный конденсатор лишь емкостью не менее 1мкФ .

Как проверить конденсатор на плате?

Все предыдущие действия можно проводить на плате. Проверить конденсатор мультиметром не выпаивая таким способом не составит труда. Но надо знать, что другие радиокомпоненты будут влиять на показания прибора. Влияние будет зависеть уже от конкретной схемы прибора.

Перед тем, как проверить исправность конденсатора необходимо помнить:

  • проверять только разряженные конденсаторы (замкнув на несколько секунд их выводы). Не соблюдая данную меру предосторожности есть шанс, что мультиметр выйдет из строя;
  • не браться за металлические выводы щупов руками. Проводимость человеческого тела непосредственно влияет на показания прибора;
  • лучше всего проверять любой конденсатор, который выпаян из основной схемы.

Вконтакте

Для домашних радиолюбителей важной составляющей работы является экономичность «творческого» процесса. Поэтому в запасниках «самоделкиных», как правило, имеется неплохой ассортимент радиодеталей, бывших в употреблении. Гарантировать работоспособность этих элементов никто не сможет, стало быть, их необходимо проверять.

Распространенным радиоэлементом является конденсатор. Эта деталь способна, подобно аккумулятору, накапливать электрический заряд. Несмотря на относительную сложность исполнения, вполне доступна проверка конденсатора мультиметром.

Что такое конденсатор, и как он работает?

Конструкция в теории достаточно проста. Две металлические пластины, разделенные диэлектриком, накапливают в пространстве между ними энергию электрического поля. Именно так выглядел первый кондер.

Виды диэлектриков, применяемых в классических конденсаторах:

  1. Воздух;
  2. Бумага (электрокартон);
  3. Керамика;
  4. Пластик.

На деле, для оптимизации характеристик и уменьшения габаритов, вместо пластин часто применяют длинные тонкие рулоны металлической фольги, разделенной диэлектриком. В результате площадь так называемых пластин увеличивается, а размеры получаются компактными.

Уменьшение размера имеет обратную сторону. Страдают эксплуатационные параметры.

Радиоэлемент имеет несколько рабочих характеристик:

Емкость. Основная характеристика, определяющая способность накапливать определенную электрическую энергию. Измеряется в Фарадах. Поскольку в бытовых устройствах редко нужна огромная емкость (в десятках фарад), обычно значение измеряется в микро или пикофарадах. Обозначение – Ф, мФ, пФ. С ростом емкости увеличиваются и габариты конденсатора.

Номинальное напряжение. Параметр определяет, при каком значении емкость будет в пределах заданной изготовителем величины. Разумеется, производитель указывает на предельно допустимое значение. При работе необходимо делать запас, на случай внезапных бросков напряжения.

Напряжение пробоя. Параметр на основной, однако, серьезно влияет на эксплуатационные свойства радиодетали. Какой бы качественный не был диэлектрик, при достижении определенного значения в вольтах, электрическая энергия найдет путь для протекания тока через изоляцию.

Произойдет так называемый пробой, или короткое замыкание между пластинами. Мало того, что в этот момент характеристики кондера будут нарушены, – можно испортить всю электросхему. В некоторых случаях возможно возгорание детали. Тот же пленочный конденсатор подвержен термическим разрушениям.

Полярность. В зависимости от условий применения, конденсаторы бывают полярными и неполярными. Второй вариант относительно неприхотлив с точки зрения эксплуатации и применения. Однако такая деталь не может накапливать большую емкость при малых габаритах. Полярный конденсатор более прогрессивен, хотя имеет серьезные недостатки.

Между пластинами (точнее рулоном фольги), вместе с диэлектриком находится особый щелочной . Поэтому второе название полярных конденсаторов – электролитические. Их легко опознать по цилиндрической форме и маркировке «+», «-» на корпусе.

Чтобы знать, как проверить электролитический конденсатор мультиметром, или правильно припаять его к схеме – надо идентифицировать полярность ножек.

Важно! При неправильном подключении, корпус электролитического конденсатора может нагреться и взорваться.

Проверка электролитического конденсатора на видео.

Что такое конденсатор в электросхеме?

Он может выступать в роли фильтра помех или скачков напряжения, неким буфером при просадках электроэнергии. На емких конденсаторах собирают источники бесперебойного питания малой мощности. При помощи этого элемента можно задавать частоту мерцания поворотного сигнала в автомобиле.

Способность конденсатора мгновенно отдавать накопленную электроэнергию применяется в случаях, когда необходимо кратковременно обеспечить высокий ток.

Например – для фотовспышки. Сначала, малым напряжением и током, накапливается энергия (это занимает определенное время, поэтому есть расхожее определение «ждем, пока вспышка зарядится»). Затем, в короткий промежуток времени, вся энергия тратится на розжиг мощной лампы.

Распространенным применением является сглаживание пульсаций во время преобразования переменного тока в постоянный. Что такое конденсатор, знает каждый, кто разбирал блок питания (балласт, драйвер) в экономной лампе.

Кстати, именно при ремонте таких блоков питания и встает вопрос – о проверке конденсатора мультиметром. Если элемент имеет внешние признаки неисправности: вздутие, потеки электролита или разорванную оболочку для полярного кондера, или раскрошившийся корпус для неполярного, проверка бессмысленна.

Испорченный конденсатор меняется. А если внешних признаков поломок нет – надо проверить работоспособность конденсатора.

Важно! Проверить конденсатор тестером прямо на электросхеме невозможно. Элемент необходимо аккуратно выпаять.

Как проверить конденсатор мультиметром?

В зависимости от функционального набора вашего тестера – есть два способа.

  1. Непосредственный. Если прибор имеет функцию проверки конденсаторов – просто следуйте инструкции;
  2. Косвенная проверка. Мультиметр применяется в качестве омметра или амперметра. По определенным признакам определяется исправность радиодетали.

Рассмотрим оба способа:

Как правильно замерить емкость мультиметром

Если на вашем приборе имеется гнездо для подключения конденсаторов, вам не нужно изобретать косвенные способы проверки.

Смотрите на корпусе основные характеристики, и производите измерение емкости конденсатора непосредственно на приборе.

  1. Выравниваете ножки конденсатора и аккуратно зачищаете их от окислов;
  2. Выставляете предел измерений, максимально близкий к значению емкости на корпусе детали. Важно! Запас по емкости не нужен. Чем ближе измеряемая величина к пределу измерения – тем точнее будет результат;
  3. Аккуратно втыкаете ножки детали в разъем прибора. Ждете, пока конденсатор зарядится. Это может занять несколько десятков секунд. Когда показания на табло перестанут меняться – это и будет значение мощности.

Если величина не сильно отличается от маркировки на корпусе радиодетали – она исправна. Если отличие больше погрешности, предусмотренной производителем (опять же смотрим на заводскую маркировку) – утилизируем деталь. Восстановлению неисправный элемент не подлежит.

Если вам удалось проверить емкость конденсатора – остальные параметры отходят на второй план. При пробое или коротком замыкании, а также термическом или механическом повреждении, показатели емкости изменятся обязательно. Поэтому старайтесь найти способ, как измерить емкость напрямую. Вы сэкономите время.

Чтобы проверить полярный или неполярный конденсатор – достаточно одного тестера с разъемом. Никакой разницы для обоих типов нет.

Как прозвонить конденсатор мультиметром – косвенная проверка исправности

Для начала необходимо понять физику процесса. Когда на клеммы конденсатора подается напряжение – в цепи начинает течь ток заряда. По окончании заряда – ток прекращается. Этим свойством мы и воспользуемся.

Необходимо полностью разрядить конденсатор. Для этого, надо подсоединить к ножкам какого-нибудь потребителя, например – лампу накаливания.

Внимание! Напряжение питания лампы должно соответствовать питанию кондера.

Небольшие конденсаторы можно разряжать простым коротким замыканием. Просто коснитесь ножками металлического предмета.

Установите мультиметр в режим измерения сопротивления, предел – 100 кОм. Убедитесь в том, что батарея прибора не разряжена, а предохранитель целый.

Соедините измерительные провода с выводами конденсатора, соблюдая полярность.

Важно! Даже если напряжение конденсатора далеко от 150 вольт – не касайтесь ножек пальцами. Это повлечет за собой высокую погрешность измерения.

На этапе заряда (от питания мультиметра) ток резко возрастет, и прибор будет показывать низкое значение сопротивления. По мере увеличения заряда, ток будет снижаться, достигая нулевого значения, соответственно прибор покажет рост сопротивления.

Нормальное сопротивление по окончании импровизированной «зарядки» от прибора – не более 1-2 мегаом. Если значение выше – прибор неисправен.

Важно! Сопротивление должно расти плавно, линейно. Скорость возрастания не имеет значения.

Для лучшего визуального восприятия – идеально подходит стрелочный тестер. На цифровом сложнее отследить динамику.

Таким способом проверяется отсутствие короткого замыкания или пробоя. Также выявляется обрыв цепи внутри детали. При замыкании пластин конденсатора мультиметр покажет нулевое сопротивление (разумеется, в диапазоне 100-200 кОм). Ни о каком плавном заряде не может быть и речи.

Обрыв определяется по бесконечно великому сопротивлению (более 2 мОм). Величина показывается сразу, и не меняется по истечении времени.

Нет разницы, как проверить керамический конденсатор мультиметром, или электролит. Принцип их работы одинаковый.

Как проверить пусковой конденсатор мультиметром

Способность починить (или хотя бы определить неисправность) бытовой техники отличает домашнего мастера. Часто стиральные машины или кондиционеры не могут работать по причине перегоревших пусковых конденсаторов. Не смотря на большую емкость и диапазон напряжения до 400 вольт, такие кондеры легко диагностируются.

Внимание! Не забудьте разрядить конденсатор. Емкость и номинальное напряжение на контактах пусковика опасно для жизни!

Достаточно подсоединить к выводам лампу 20-40 Вт. Кратковременное зажигание спирали, и медленное ее затухание свидетельствует о потенциальной исправности кондера. После полной проверки, вы сделаете окончательный вывод.

Теперь вы знаете, как проверить конденсатор мультиметром. При проверке компонентов бытовой техники, подобные навыки сэкономят ваше время и деньги.

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов. Как электрический прибор конденсатор участвует во множестве электрических схем. Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.

Конструкция подобного рода электронных компонентов для элементарного представления довольно проста и состоит из двух проводящих электрический ток изолированных диэлектриком обкладок. В качестве диэлектрика используются различные вещества и материалы, не проводящие электрический ток – воздух, керамические пластины, специальная бумага, слюда.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.

Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Большие по мощности и размерам конденсаторы применяются в основном в качестве пусковых элементов электродвигателей при использовании однофазного подключения в таком случае конденсаторы должны иметь большую емкость и номинал.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).

Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Другим, не менее эффективным способом проверки работоспособности конденсатора является тестирование его с помощью комбинированного прибора мультиметра. Мультиметры, а особенно те, которые имеют специальный режим проверки емкости позволяют быстро, точно и достоверно протестировать устройства.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Данный метод во многом дает позитивный результат при проверке схем с небольшим напряжением, при проверке элементов работающих схем с высоким рабочим напряжением такой вариант недопустим.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В таком случае необходимо использование специализированного мультиметра, имеющего в своем арсенале функцию измерения емкости.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

  • Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх).

    Внимание! При работе обязательно соблюдать указанную полярность контрольных щупов!

  • Тестируемый образец полностью разряжается.
  • Контрольные щупы соединяются с местами выводов на тестируемом образце.

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.

Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Номинал конденсаторов менее чем 0.25мкФ, с помощью обычного мультиметра могут проверяться только на наличие короткого замыкания. Превышение допустимых значений измерения может привести к выходу из строя прибора, и хотя внутри мультиметра и установлен предохранитель, все равно прибор может быть испорчен безвозвратно.

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В - 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ - 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.

Конденсатор способствует накоплению электрического заряда. И если он неисправен, данное свойство теряется.

Классифицируются они на:

  • электролитические, подключение которых в схему должно быть строго определённым;
  • неполярные, подключенные в любом порядке.

Для проверки работоспособности конденсатора следует воспользоваться простым мультиметром. Данное оборудование помогает в поиске сбоев в электроцепи (измерение напряжения, ее «прозвон»), и в анализе работоспособности отдельных электродеталей.

Так как конденсатор — составная часть любой электросхемы и его нерабочее состояние часто результат истечения его срока годности , то и тогда придет на помощь мультиметр, который уловит искажения в сигнале электроцепи.

Проверка исправности электролитического конденсатора

Проверка начинается с визуального осмотра детали. Взрыв – естественное явление при увеличенном давлении внутри корпуса электролитов, если они повреждены. Даже при небольшой взрывной мощности вред будет заключаться в разбрызгивании их содержимого вокруг.

Чтобы предотвратить это, в верхней части конденсаторов делается крестообразная насечка, которая способствует стравливанию внутри корпусного давления. Вспучивание и разрыв корпуса уже говорит о неисправности устройства.

В остальных случаях потребуется проверить работоспособность конденсатора мультиметром, который измерит сопротивление батарейки. Для этого производится подключение прибора к выводам конденсатора с соблюдением полярности.

Первоначально сопротивление будет близко к 0 из-за разрежённости устройства. Но при зарядке конденсатора от батареи можно будет наблюдать увеличение показателя сопротивления. При окончании зарядки мультиметр высветит бесконечно большое сопротивление.

До проверки конденсатора потребуется его разрядка, которая может быть осуществлена при замыкании выводов между собой. Предельное значение измерения — максимально возможное. Производится соединение плюсового выхода детали с ее красным аналогом на приборе.

Подключение минусового черного выхода — к другому выходу. Измеряя сопротивление, следят за постоянно увеличивающимися показаниями мультиметра. Не должно быть их уменьшений.

Контакты между выходами должны быть надежными. Процесс не должен быть прерван. Запрещено прикасание к ним из-за сопротивления человеческого тела, которое помешает зарядке и определению работоспособности детали.

Результаты проверочной работы:

  • Показания равны 0 и отсутствует их увеличение или оно незначительно. Значит, имеется замыкание между обкладками. И если конденсатор подключить к рабочей схеме, произойдет короткое замыкание.
  • Заметное увеличение показаний прибора, но без достижения ими бесконечности. Значит, есть ток утечки, при значительном снижении емкости изделия. Результат – неэффективная работа элемента без полного выполнения им своего функционального назначения. Сигнал будет искажен.

Напряжение мультиметра — до 1,5 В, а в рабочих схемах с конденсатором — значительно больше. Поэтому при наличии утечки у прибора и его установки при рабочем напряжении возможен полный его пробой.

Проверка исправности неполярных конденсаторов

  • При зарядке детали от мультиметра есть возможность проверки исправности элементов емкостью от 0,5 мкФ . При этом не важна полярность подключения. Более малая емкость не позволит заметить изменения на приборе. При показателях емкости, определяемых цифровым прибором, больше ее номинального значения элемент считается неисправным. Показания мультиметра верны при очевидном замыкании между обкладками.
  • Проверка детали с напряжением от 400 В возможна при ее зарядке от сети в точке, защищенной от короткого замыкания автовыключателя. Также должен быть подключен резистор последовательно с конденсатором, чье сопротивление от 100 Ом, чтобы ограничить первоначальный токовый бросок. В момент после зарядки и спустя время производится измерение напряжения на выводах детали. При этом важно долгое сохранение заряда. После потребуется разрядка элемента с помощью резистора, через который произошла его зарядка.

Как проверить конденсатор, не выпаивая его

К сожалению, при прогреве паяльным прибором при пайке восстановление свойств конденсаторной детали – явление редкое. И, к сожалению, нет универсального метода проверки его исправности без выпаивания данного элемента из схемы. Другие элементы, окружающие его, будут шунтировать его своим сопротивлением.

Поэтому:

  • После впаивания прошедшего проверку конденсаторного элемента возможно включение оборудование, которое подверглось ремонту, чтобы понаблюдать за изменениями в его работе. При улучшении или восстановлении работоспособности данного оборудования производится замена проверенной детали на новую;
  • Для сокращения времени на проверку производят выпаивание только 1-ого из выводов , что не всегда возможно для большинства деталей электролитического типа из-за особенности конструкции их корпуса;
  • При последовательном подключении проверяемого элемента с иным возможно определение его исправности прямо на плате, выпаяв его;
  • При сложной схеме с множеством конденсаторов определение неисправности конденсаторных деталей производится измерением напряжений на них. При отклонении данного показателя производится выпаивание подозрительного элемента и его проверка 1-им из вышеперечисленных способов.

Проверка емкости конденсаторов

При значениях конденсаторной емкости до 0,5 мкФ зарядка происходит с такой быстротой, что проследить за этим не под силу ни одному оборудованию. Для этого необходимо определение номинальности емкости детали с помощью измерителя емкости — LC-метра.

Для домашнего пользования возможно использование небольших цифровых измерителей емкости. У них есть щупы подключения, дисплей на жидких кристаллах и переключатель пределов измерения.

Чтобы проверить конденсаторный элемент, первоначально распознают его емкость по обозначениям на его корпусе, осуществляют выбор необходимого предела измерения и подсоединяют его к измерительному прибору. Есть модели, измеряющие емкость без выпаивания элементов из схемы.

При существующем разбросе параметров измеренное значение детали должно входить в регламентируемый допуск. Иначе конденсаторный элемент неисправен.

Можно приобрести мультиметры со встроенной данной функцией. Есть модели со стандартными щупами для подключения проверяемых элементов и гнездами на их корпусе. Однако, пределы данных моделей ограничены.

  • При сбоях в схеме проверяется дата выпуска конденсаторного элемента. За 5-летний срок эксплуатации возможно «усыхание» данной детали на 55 – 75%. Поэтому слишком старую деталь лучше сразу заменять, потому что даже рабочий элемент будет вносить некоторые искажения.
  • Для максимальной точности результатов измерений перед проверочным процессом в оборудование необходимо поставить новую батарейку.
  • До проверки конденсатор рекомендуется выпаивать из схемы полностью или только 1-ну ножку. Если элемент большой и имеет подводку проводов, то отсоединению подвергается 1 из них. Иначе результат будет искажен.
  • Касание руками выводов конденсатора при его проверке строго запрещено. Это объясняется тем, что человеческое тело имеет сопротивление в 4 Ом, которое способно исказить результат поверки.
  • Для современных мультиметров максимальным пределом измерения будет емкость до 200 мкФ. Номинал элементов емкостью до 0.25мкФ подвергаются проверке на наличие короткого замыкания. Если превысить допустимые значения измерения, мультиметру грозит поломка, даже несмотря на установленный внутри него предохранитель.
  • При работе с высоковольтными схемами не стоит забывать о технике безопасности. Любой такой ремонт должен начинаться после того, как ремонтируемое оборудование выключено и электрокомпонент разряжен разрядной цепью.
  • Чтобы проверить деталь большой емкости, может подойти более экстремальный способ. После того, как элемент зарядится полностью, производят замыкание его выводов на предмете из металла. Предварительно данный предмет должен быть покрыт изолятором, и имеет смысл работать в резиновых перчатках. Появление искры и одновременно характерное звуковое сопровождение будет служить результатом процесса разряда.

Проверка пускового конденсатора - Дизайн Дома

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Источник:

Как проверить конденсатор мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем.

Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента.

Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.

Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.

Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться.

Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1».

Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности.

Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля.

Со стороны этой ножки располагается «минус», с противоположной «плюс».

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Как проверить конденсатор тестером (стрелочным прибором)

Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера.

Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.

Похожие материалы на сайте:

Источник:

Как проверить исправность конденсатора, его емкость и сопротивление

Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.

По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию. Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.

Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад. Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора. И так выставляем тестер в режим или прозвонки или сопротивления.

Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение. Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается. Скорость заряда будет напрямую зависеть от емкости конденсатора.

Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.

Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.

Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора. Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве. Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым.

Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор? Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.

Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора. Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.

Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.

Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения. Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.

Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов. Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром.

Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.

С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора.

В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

«Зарядка напряжением».

Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.

И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды.

После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?

В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой. У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Источник:

Как проверять конденсаторы мультиметром?

Выход из строя такой, казалось бы, простой детали как конденсатор часто приводит к поломке электротехники. Чтобы определить его исправность, даже не понадобится изучать основы электротехники, достаточно знать как проверить мультиметром конденсатор, после чего восстановить работоспособность микроволновки или холодильника не составит труда.

Прежде чем произвести ремонт необходимо определить какая деталь неисправна, для этого нам потребуется цифровой мультиметр, такой как показан на рисунке ниже и паяльник.

Модель DT-803B

Как измерить основную характеристику (емкость)

Не все неисправности конденсатора поддаются тестированию в режиме омметра, например, при обрыве. И если мультиметр показывает бесконечно большое сопротивление полярного элемента, что может является явным признаком его неисправности (при условии правильного подключения), то для неполярных радиодеталей этот способ совершенно не годится.

Проверить потерю номинальной емкости в режиме омметра также невозможно. В этом случае не обойтись без прибора, позволяющего измерять эту характеристику. Как правило цифровые мультиметры позволяют проводить тестирование в пределах от 20нФ до 200мкФ, что вполне достаточно для диагностики.

Мультиметром с данной функцией можно тестировать любые конденсаторы, в том числе и электролитические, при проверке последних следует соблюдать полярность.

Видео: как проверить конденсатор

Для проверки достаточно вставить выводы детали в гнезда Сх, а ручку переключателя прибора установить на необходимый диапазон измерений, после чего параметры емкости отобразятся на дисплее.

Подключение при измерении емкости

Неисправности и причины их возникновения

Вне зависимости от того, какого типа конденсатор бумажный или высоковольтный, он может выйти из строя в результате следующих неисправностей:

  • снижение номинальной емкости в результате высыхания;
  • ток утечки превышает определенное значение;
  • возрастание активных потерь в цепи;
  • короткое замыкание обкладок (пробой изолятора);
  • потеря контакта между обкладкой и выводом детали (обрыв).

Описанные выше неисправности могут возникнуть в следствие нарушения температурного режима, превышения порога допустимого напряжения, механических повреждений и т.д.

Заметим, что понижением рабочей температуры можно существенно продлить службу практически любого радиоэлемента. Именно перегрев в большинстве случаев становится основной причиной поломки радиодеталей.

Как показывает практика, чаще всего неисправность конденсатора обусловлена коротким замыканием обкладок, то есть пробоем. Расскажем подробно как произвести диагностику в этом случае.

Диагностика неисправностей

Довольно часто выявить пробой радиоэлемента можно в результате визуального осмотра, по характерному вздутию, потемнению, трещинам или другим нарушениям целостности корпуса. В качестве примера на фотографии продемонстрированы такие признаки.

Пробой конденсаторов керамического и электролитического типа

Читайте также:  Межкомнатные перегородки

К сожалению, визуально обнаружить неработающий радиоэлемент не всегда удается, вполне нормальная с виду деталь, у которой целый корпус, не имеющий ярко выраженных дефектов, может быть нерабочей из-за внутреннего короткого замыкания.

Перед тем как начать проверять мультиметром  неполярный пленочный, керамический, электролитический, smd  или sbb конденсатор, следует снять его с платы, поскольку протестировать не выпаивая радиодеталь практически не возможно.

Для справедливости необходимо заметить, что есть несколько способов не прибегать к паяльнику, один из них – замерять сопротивление цепи на плате, но для этого потребуется карта сопротивлений, причем, для конкретной модели сломавшегося устройства, а она не всегда есть даже в официальных сервисных центрах.

Диагностика устройств неполярного типа

При проверке мультиметром нам не понадобится замерять емкость конденсатора неполярного типа, достаточно измерить его сопротивление, оно должно быть бесконечно большим. В случае пробоя прибор покажет его незначительную величину, то есть деталь будет себя вести как обычный проводник электрического тока.

Очередность действий при тестировании следующая:

  • необходимо выставить максимальный диапазон измерения в режиме омметра;
  • щупами прибора прикасаемся к выводам радиодетали  (учитывая тип конденсатора, нет необходимости соблюдать полярность);

Проверка неполярных моделей

  • если на табло отображается «1», это указывает нам, что измеряемое сопротивление больше двух мегаом, следовательно, деталь исправна, в противном случае мультиметр покажет какую-либо величину, что означает короткое замыкание внутри радиодетали.

Важный момент! При замере не следует держать щупы прибора за неизолированные места, поскольку в этом случае показания будут недостоверны, вы просто измерите величину сопротивления своего тела.

Тестирование также можно вести в режиме проверки диодов, в этом случае, если существует пробой, прибор обозначит короткое замыкание характерным звуковым сигналом.

Диагностика полярных конденсаторов

Конденсаторы полярного типа (электролитические) проверяются примерно таким же образом, за исключением того, что порог измерения должен быть более 100кОм.

Перед диагностикой необходимо разрядить радиодеталь, для этого достаточно соединить  выводы. Высоковольтный конденсатор желательно «закорачивать» через нагрузку, ею может служить сопротивление или обычная лампочка накаливания.

Разрядка отверткой

Не убрав заряд, есть высокая вероятность испортить мультиметр, помимо этого, дотронувшись до выводов открытым участком тела, вы разрядите конденсатор через себя, а это довольно неприятное ощущение.

Собственно, наличия искр при разрядке достаточно для того чтобы показать, что устройство исправно.

Для проверки мультиметром конденсатора подсоединяем щупы (при этом необходимо соблюдать полярность), в результате этого электрический ток, поступающий с прибора, будет   накапливаться в тестируемой детали. Во время этого процесса мультиметр начнет показывать увеличение сопротивления, что говорит об ее исправности.

Заметим, что более наглядно это выглядит на аналоговых измерительных приборах, в частности, на стрелочных омметрах. Скорость, с которой отклоняется стрелка, позволяет судить о емкости, чем длительней этот процесс, тем она больше.

Метод проверки в режиме омметра относится к косвенным, для получения точной оценки потребуется воспользоваться цифровым мультиметром, который позволяет измерять емкость, например, модель DT890B+.

Мультиметр для измерения емкости

Ремонт бытовых приборов

Выход конденсаторов из строя приводит к тому, что бытовые приборы перестают функционировать. Описанная выше техника тестирования позволит определить неисправную деталь. После ее обнаружения достаточно произвести замену неисправного элемента, чтобы восстановить работоспособность телевизора, СВЧ печи или пылесоса.

Зная, как проверить мультиметром конденсатор, вы сможете проверить, насколько работоспособен пусковой элемент в генераторе автомобиля или определить неисправность трамблера.

Внимание! Перед тем как приступать к ремонту любых электрических приборов необходимо убедиться, что они отключены от сети питания. Манипуляции с устройствами, находящимися под напряжением, могут стать причиной поражения электрическим током.

Источник:

Как проверять конденсаторы мультиметром не выпаивая, проверить исправность

Что такое конденсатор

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов.

Как электрический прибор конденсатор участвует во множестве электрических схем.

Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.

Конструкция подобного рода электронных компонентов для элементарного представления довольно проста и состоит из двух проводящих электрический ток изолированных диэлектриком обкладок. В качестве диэлектрика используются различные вещества и материалы, не проводящие электрический ток – воздух, керамические пластины, специальная бумага, слюда.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.

Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Большие по мощности и размерам конденсаторы применяются в основном в качестве пусковых элементов электродвигателей при использовании однофазного подключения в таком случае конденсаторы должны иметь большую емкость и номинал.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).

Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Другим, не менее эффективным способом проверки работоспособности конденсатора является тестирование его с помощью комбинированного прибора мультиметра. Мультиметры, а особенно те, которые имеют специальный режим проверки емкости позволяют быстро, точно и достоверно протестировать устройства.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Данный метод во многом дает позитивный результат при проверке схем с небольшим напряжением, при проверке элементов работающих схем с высоким рабочим напряжением такой вариант недопустим.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В таком случае необходимо использование специализированного мультиметра, имеющего в своем арсенале функцию измерения емкости.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

  • Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх).Внимание! При работе обязательно соблюдать указанную полярность контрольных щупов!
  • Тестируемый образец полностью разряжается.
  • Контрольные щупы соединяются с местами выводов на тестируемом образце.

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.

Советы и рекомендации

Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Номинал конденсаторов менее чем 0.25мкФ, с помощью обычного мультиметра могут проверяться только на наличие короткого замыкания.

Превышение допустимых значений измерения может привести к выходу из строя прибора, и хотя внутри мультиметра и установлен предохранитель, все равно прибор может быть испорчен безвозвратно.

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В — 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ — 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.

Источник:

Проверка конденсаторов различного типа мультиметром и без него

Конденсатор — электронный элемент, относящийся к категории пассивных.

Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд.

В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их. Для данной группы элементов характерно «вздутие».

Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения. Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко. Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки.

Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности. Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться. Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор.

Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается. Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу.

Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд. Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд.

Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Источник:

Инструкция как проверить конденсатор мультиметром

С помощью специального технического оборудования можно обнаружить различные радиоэлементы, которые вышли из строя или износились. Но все становится весьма непросто, когда требуется произвести тестирование емкостных элементов при помощи мультитестера, потому как самых обычных «прозвонов» элементы данного типа не боятся.

На фото представлен мультиметр

Как проверить?

Что такое мультиметр? Это универсальное устройство, которое позволяет выполнять электрические измерения. При помощи этого аппарата можно произвести измерения показателей тока постоянного и переменного типа, а также замерить мощностной показатель сети, емкость конденсатора, мощность сопротивления и радиодеталей.

На данный момент все приборы этого типа подразделяют на два основных типа:

  • цифровой – этот прибор отображает все полученные результаты на табло цифрового вида;
  • аналоговый – для отображения показателей используется специальная цифровая шкала.

На корпусе прибора устанавливают специальный регулятор. В некоторых случаях таких регуляторов бывает несколько. Они необходимы для того, чтобы переключать режимы и величины измерения. Для того, чтобы выполнить замер применяют щупы (специальный провод на одном конце которого имеется разъем, а на второй – наконечник из металла).

Электролитический конденсатор можно проверить мультиметром не выпаивая. Специально для этого используют омметр, который входит в состав устройства этого вида.

Показатель сопротивления электрического конденсатора будет выше отметки в 100 Мом:

  • Прибор разряжают. Для этого устраивают короткое замыкание на ножках.
  • Непосредственно на корпусе прибора выставляют соответствующую величину измерения.
  • Оба вывода подводят к ножкам. Левую к минусу, а правую к плюсу.
  • Если показатель сопротивления выше указанной величины, то прибор исправен.

Для наглядного ознакомления с проведением данного технического процесса можно воспользоваться видеоматериалом, представленным ниже:

Чтобы измерить емкость конденсатора при помощи мультиметра, необходимо следовать инструкции:

  • Измерительные прибор переводят в состояние измерения емкости.
  • Дважды производят подключение щупов. Второй раз их меняют местами.
  • Фиксируют результат. Сравнивают оба показания.
  • В том случае, если в первый раз на экране появился «0», а во втором «-», то прибор абсолютно исправен. Если же показания одинаковы, то устройство можно считать нерабочим.

Этот метод используют для определения утечки или наличия обрывов. При необходимости проведения проверки конденсатора на плате с помощью мультиметра используют зарядку устройства и разрядку его, при этом практически полностью меняют полярность. По мнению опытных специалистов этот вариант является весьма сомнительным.

Проверка разных видов

Проверка конденсатора с помощью мультиметра на сопротивление на смнимке

При проверке керамического конденсатора (неполярного) с помощью мультиметра применяют различные диэлектрики. К примеру, это может быть бумага, стекло или воздух.

Весь процесс сводится к следующему:

  • Переводят устройство в режим измерения реального сопротивлении.
  • На приборе выставляют максимальный предел.
  • Устройство настраивают и щупами касаются к ножке

Процесс проверки конденсатора мультиметром на фото

В том случае, если устройство рабочее, то на нем покажется величина в 2 Мом. Если же показатель будет меньше, то прибор вышел из строя.

Проверяя пленочный конденсатор мультиметром, проверяют показатель сопротивления. Если в устройстве «утечка», то ничего не изменится. Если существует внутренний обрыв, то на аналоговом мультиметре стрелочка уйдет в бесконечность.

Если с помощью мультиметра необходимо произвести проверку на работоспособность пускового конденсатора, то первоначально извлекают пусковой механизм. Затем проверяют его на наличие утечек электрического типа. Присоединяют щупы к клеммам. После этого выполняют проверку емкости.

Когда речь заходит о проверки неполярного конденсатора, то следует обратиться к материалу, предоставленному выше, потому как с точки зрения принципиального устройства прибор этого типа ничем не отличается от керамического конденсатор.

Проверка smd конденсатора проводится также, как и обычного устройства. С помощью измерения максимального показателя сопротивления.

Внимание! Проверяя высоковольтный конденсатор всего-то и надо, что зарядить его свыше нормы. Тогда все будет заметно сразу же.

На снимке цифровой мультиметр UT20B

Конденсатор переменного тока проверяют при помощи мультиметра с помощью измерения данного показателя дважды с переменой полярности. После чего их сравнивают и на основе этого делают вывод. Если показатель №2 будет выше, то прибор исправен.

Как проверить в бытовой технике?

В некоторых отдельных случаях приходится проверять конденсатор, который находится в корпусе бытовой техники:

  • конденсатор от стиральной машины – измерят с помощью мультметра или тестера. Измерение производится на максимальное сопротивление устройства. Если оно исправно, то стрелочка прибора отклонится.
  • конденсатор микроволновки – при подключении мультиметра показатель сопротивления должен быть бесконечным (при условии, что измерительный прибор стоит в положении Rх 1000).
  • автомобильный конденсатор – для этого пользуются стандартным методом.

Как проверить без мультиметра?

Для того чтобы проверить конденсатор на работоспособность без использования специального измерительного оборудования необходимо работать с конденсаторами высокой мощности.

При этом пользуются одним из свойств конденсатора – копить заряд и подзаряжаться. конденсатор заряжают высоким напряжение (больше чем номинал, указанный на корпусе устройства).

Делают это на протяжении нескольких секунд.

Внимание! Руки не должны прикасаться к металлическим элементам устройства. Железо должно быть полностью изолировано от человека. После аккуратно замыкают при помощи железного элемента контакты конденсатора. Появится искра.

Смотрите на видео как проверить конденсатор:

Сегодня создано большое количество технических средств, предназначенных для измерения и замера различных электрических и технических показателей. При помощи них можно вовремя выявить неполадки и произвести замену. Ко всему прочему можно будет избежать серьезных трат на покупку нового оборудования. Вес что потребуется – это отремонтировать или заменить износившийся элемент.

Окт 5, 2015Татьяна Сумо

Источник:

Как проверять конденсаторы мультиметром не выпаивая, проверить исправность

Что такое конденсатор

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов. Как электрический прибор конденсатор участвует во множестве электрических схем. Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.
Конструкция подобного рода электронных компонентов для элементарного представления довольно проста и состоит из двух проводящих электрический ток изолированных диэлектриком обкладок. В качестве диэлектрика используются различные вещества и материалы, не проводящие электрический ток – воздух, керамические пластины, специальная бумага, слюда.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.

Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Большие по мощности и размерам конденсаторы применяются в основном в качестве пусковых элементов электродвигателей при использовании однофазного подключения в таком случае конденсаторы должны иметь большую емкость и номинал.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).

Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Другим, не менее эффективным способом проверки работоспособности конденсатора является тестирование его с помощью комбинированного прибора мультиметра. Мультиметры, а особенно те, которые имеют специальный режим проверки емкости позволяют быстро, точно и достоверно протестировать устройства.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Данный метод во многом дает позитивный результат при проверке схем с небольшим напряжением, при проверке элементов работающих схем с высоким рабочим напряжением такой вариант недопустим.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В таком случае необходимо использование специализированного мультиметра, имеющего в своем арсенале функцию измерения емкости.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

  • Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх). Внимание! При работе обязательно соблюдать указанную полярность контрольных щупов!
  • Тестируемый образец полностью разряжается.
  • Контрольные щупы соединяются с местами выводов на тестируемом образце.

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.

Советы и рекомендации

Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Номинал конденсаторов менее чем 0.25мкФ, с помощью обычного мультиметра могут проверяться только на наличие короткого замыкания. Превышение допустимых значений измерения может привести к выходу из строя прибора, и хотя внутри мультиметра и установлен предохранитель, все равно прибор может быть испорчен безвозвратно.

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В — 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ — 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.

Как проверить конденсатор - используем мультиметр для проверки на работоспособность конденсатор

Без конденсаторов, пожалуй, не обходится ни одна электрическая или электронная схема. Этот довольно простой по строению и, в общем-то, нехитрый по принципу своего действия элемент – буквально незаменим. И выход из строя такого миниатюрного «звена» общей цепи вполне способен повлечь и общую неработоспособность всего прибора или устройства.

Как проверить конденсатор

Многие конденсаторы способны служить десятилетиями, и при этом не потребовать замены. Но время от времени выход из строя или некорректная работа электронной схемы заставляет заниматься поисками «виновника». Подозрение порой падает и на эти элементы цепи. Поэтому необходимо знать, как проверить конденсатор, чтобы убедиться в его пригодности или, наоборот, необходимости замены.

Да и перед проведением электромонтажных работ тоже не мешает заранее проверять элементы, которые будут впаиваться на свое место в плату. В любой партии изделий может быть определенный процент заводского брака. И проще выявить нерабочий конденсатор до его установки, нежели потом искать неисправности по всей схеме.

Основные типы конденсаторов

Буквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.

Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.

Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.

Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.

Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.

Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:

1 mF = 0.001F = F×10⁻³ — миллифарад;

1 μF = 0.001mF = F×10⁻⁶ — микрофарад;

1 nF = 0.001μF = F×10⁻⁹ — нанофарад;

1 pF = 0.001nF = F×10⁻¹² — пикофарад

Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.

Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко

Прежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.

  • Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».

Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.

Керамические конденсаторы

Для достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.

Серебряно-слюдяные конденсаторы

К неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.

Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.

Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.

  • Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.

Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!

Электролитические полярные конденсаторы

Шагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.

Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.

Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.

Какие неисправности могут случиться в конденсаторе

Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.

Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:

  • Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
  • Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
  • Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
  • Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
  • Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.

ЭПС складывается из нескольких факторов:

— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.

— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.

— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.

Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.

Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)

Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.

Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.

Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):

 10 V16 V25 V35 V50 V63 V100 V160 V250 V350 V450 V
1 μF--2.12.44.54.58.59.58.78.53.6
2.2 μF--2.02.44.54.52.34.06.14.23.6
3.3 μF--2.02.34.74.52.23.14.61.63.5
4.7 μF--2.02.23.03.82.03.03.51.65.7
10 μF-8.05.32.21.61.92.01.21.41.26.5
22 μF5.43.61.51.50.80.91.51.10.71.11.5
33 μF4.32.01.21.20.60.81.21.00.51.1-
47 μF2.21.00.90.70.50.60.70.50.41.1-
100 μF1.20.70.30.30.30.40.150.30.2--
220 μF0.60.30.250.20.20.10.10.20.2--
330 μF0.240.20.250.10.20.10.10.10.2--
470 μF0.240.180.120.10.10.10.10.10.15--
1000 μF0.120.150.080.10.10.10.10.10.1--
2200 μF0.120.140.140.10.10.10.10.10.1--
3300 μF0.130.120.130.10.10.10.10.10.1--
4700 μF0.120.120.12.010.10.10.10.10.1--

Как проводится проверка конденсаторов

Первый шаг – выбраковка по возможным внешним признакам

Если при некорректной работе или при полной неработоспособности схемы подозрение падает на конденсаторы, разумно будет первым делом произвести внимательный визуальный осмотр этих элементов. Не исключены внешние признаки, которые ясно дадут понять о возникших проблемах.

Аналогичную визуальную «ревизию» стоит проводить и при монтаже схемы, тем более в том случае, если для ее сборки используются радиодетали, уже бывшие в употреблении. Кстати, и среди абсолютно новых нет-нет, да и встречаются явно бракованные.

Обычно сразу становятся заметны конденсаторы с пробоем – это выражается в потемнении, вздутии, прогорании или растрескивании керамического корпуса. Понятно, что такие элементы подлежат безусловной замене, и даже не стоит терять время на их дальнейшую проверку – лучше сконцентрировать свое внимание на поиске возможных причин, приведших к таким последствиям.

Керамическая облицовка конденсатора растрескалась и осыпалась – явный признак пробоя и необходимости замены.

А в этом случае, по всей видимости, пробой конденсатора сопровождался еще и не слабой электрической дугой.

Даже если ставится новый керамический конденсатор, но он уже  имеет трещины или сколы на корпусе, то его лучше сразу отложить в брак – не столь высока его стоимость, чтобы закладывать в схему «мину замедленного действия». Разумнее поставить полностью исправный и неповреждённый внешне элемент.

Пробои чаще встречаются на неполярных конденсаторах или на танталовых полярных (они очень чувствительны к превышениям напряжения).

Явными признаками выхода из строя, или же состояния, близкого к критическому, хорошо сигнализируют  электролитические полярные конденсаторы. Это обусловлено самой особенностью их конструкции.

При превышении допустимого напряжения или же при изменении полярности на отводах внутри «бочонка» резко активизируются химические реакции, сопровождающиеся перегревом электролита и его испарением. Это может привести просто к пересыханию конденсатора, то есть к потере им своей номинальной емкости и повышению тока утечки. Но нередко увеличение давления внутри алюминиевого корпуса заканчивается и его разрывом.

Не характерный, но все же иногда встречающийся боковой разрыв корпуса алюминиевого полярного электролитического конденсатора.

Чтобы свести к минимуму вероятность поражения соседних элементов схемы разорвавшимся электролитическим конденсатором, производители предусматривают утонченную верхнюю «крышку» цилиндра, на которую, кроме того, наносятся насечки в виде креста или звездочки. Таким образом, искусственно создаётся «слабое звено» корпуса, чтобы в случае взрыва (прорыва паров электролита) он был направлен вверх.

Вовремя не замеченный вздутый конденсатор может разорвать внутренним давлением – последствия показаны на фотографии. Лучше до этого не доводить!

Но еще до этой критической ситуации конденсаторы начинают «сигнализировать» о скором «окончании своей карьеры» вздутием этой ослабленной стенки. По этому внешнему признаку следует сразу, не откладывая, производить выбраковку и замену элементов схемы. Проводить дополнительные проверки таких конденсаторов – вряд ли имеет смысл.

На четырех конденсаторах – явное вздутие верхней стенки, говорящее о необходимости замены. А на двух – еще и признаки потери герметичности и прорыва электролита наружу.

Правда, следует проявлять внимательность, и обращать внимание еще на один признак. Случается, что даже при отсутствии деформации верхней стенки цилиндра конденсатора, превышение давления приводит к выжиму нижней диэлектрической пробки, через которую проходят отводы. Встречается такое не столь часто, но тем не менее…

Верхняя крышка вроде бы не имеет явной деформации, но вот нижняя пробка явно выдавлена наружу. Возможно, причина этому – заводской брак, но конденсатор однозначно нуждается в замене.

Итак, если заметны явные внешние признаки выхода конденсатора из строя, не стоит тратить время на его последующую более тщательную проверку – даже если показатели будут в пределах, вроде бы, нормы, последующее использование все же крайне нежелательно.

Но в том случае, когда никаких признаков нет, но подозрения из-за неработоспособности схемы падают именно на конденсатор, его следует проверить доступными способами. Для этого прежде всего они выпаивается их схемы.

Многие спрашивают, а возможна ли проверка конденсатора без выпаивания с платы? Да, некоторые способы или хитрости на этот счет имеются, но они возможны далеко не всегда, и зачастую не дают достоверной картины. Подробнее мы на этом остановимся чуть ниже. Но для качественной проверки, не имея в распоряжении специальных приборов, элемент все же придется демонтировать.

Проверка конденсатора с помощью  мультиметра

В распоряжении домашнего мастера – неспециалиста в области электроники, как правило, может иметься только обычный мультиметр. Но определенную диагностику и выбраковку вышедших из строя конденсаторов можно провести и с его помощью.

Проверка с помощью омметра

Чаще всего первым шагом производится проверка конденсатора на пробой или обрыв с помощью омметра. Такая «ревизия», по сути, является косвенной, но все же может показать явные неполадки, то есть провести выбраковку. Правда, есть нюансы, которые зависят и от типа конденсатора, и от его номинальной емкости.

Любой конденсатор не должен пропускать постоянный ток. То есть – обладать очень высоким сопротивлением. Возможный ток утечки может быть – это зависит от качества диэлектрического разделительного слоя между обкладками, но в идеале – он настолько мал, что может не учитываться.

То есть при замере сопротивления между выводами конденсатора должно получиться очень высокое значение. Для рабочих неполярных элементов оно лежит в пределах выше 2 МОм.

Значит, мультитестер должен быть переведен в режим работы омметра на максимальном диапазоне. У наиболее распространенных моделей – это как раз и составляет предел измерений в 2000 кОм = 2 МОм.

Мультиметр установлен в режим измерения сопротивления с пределом до 2000 кОм или 2 МОм

Перед проверкой любого конденсатора его следует «очистить» от возможного остаточного заряда. Для элементов небольшой емкости и с невысокими показателями напряжения это делается обычным перемыканием выводов с помощью отвертки, пинцета, щупа и т.п.

Разрядка конденсатора небольшой емкости простым перемыканием его контактов-выводов.

Для разрядки конденсаторов ёмкостью более 100 μF, и в особенности – с рабочими напряжениями свыше 50 вольт, перемыкать контакты следует через резистор сопротивлением порядка 5÷20 кОм и мощностью не менее 1 Вт. В противном случае можно получить довольно мощную искру, что небезопасно. Перемыкание с помощью резистора проводят в течение двух-трех секунд для полной разрядки конденсатора.

Если проверяется неполярный конденсатор, то как уже говорилось, его сопротивление должно быть не менее 2 MОм. Если прибор типа DT установлен на максимальный предел измерений в 2000 кОм, то на дисплее следует ожидать единицы в крайнем левом разряде, говорящей о том, что цепь, по сути, разомкнута, то есть измеряемое значение лежит выше максимальной установленной границы. У мультиметров другого типа может быть и иная индикация отсутствия проводимости – например, буквенные символы «OL».

В любом случае, если дисплей показывает или полное отсутствие проводимости, или очень высокий показатель сопротивления (более 2 МОм) то можно с уверенностью говорить, что пробой не выявлен, а ток утечки если и есть – то в допустимых пределах.

В распоряжении автора статьи – мультиметр ZT102, в котором реализовано автоматическое определение пределов измерений. то есть достаточно просто установить режим работы на омметр, а единицы измерения прибор определит и покажет самостоятельно. Попробуем проверить на пробой керамический конденсатор ёмкостью 4700 pF = 4.7 nF

Мультиметр устанавливается в режим измерения электрического сопротивления.

Подготовка к замеру – установлен нужны режим. На дисплее символы, обозначающие отсутствие проводимости между щупами прибора.

Щупы-зажимы подключены к выводам конденсатора. На дисплее – ничего не изменилось.

После подключения конденсатора к щупам (полярность в данном случае не имеет никакого значения) на дисплее изменений не отмечено – все те же символы, говорящие об отсутствии проводимости.

Вывод – полного пробоя или недопустимо высокого тока утечки однозначно нет.

К сожалению, такая проверка не дает никакого вразумительного ответа, если ли обрыв на этом конденсаторе (обрыв характеризуется точно такими же показаниями дисплея). Просто ток, необходимый для зарядки столь невысокой емкости, настолько незначителен, а сама зарядка происходит так быстро, что мультитестер не успевает на это прореагировать изменением показаний.

Так что подобный метод на неполярных конденсаторах малой емкости, менее 1 μF, и с использованием приборов с невысокими пределами измерений, не дает однозначного ответа о полной исправности элемента. И для полноценной картины не обойтись без измерения емкости.

Теперь, для сравнения, посмотрим на проверку омметром неполярного конденсатора с более высоким показателем емкости – 1 μF.

Исходное положение – то же, но неполярный конденсатор уже с указанным номиналом мощности в 1 μF.

Показания сопротивления на дисплее «стартуют» с сотен килоом, быстро пересекают рубеж мегаом и продолжают стремительно расти.

Значения растут, показывая, что ток зарядки конденсатора стремительно снижается.

Наконец, зарядка полностью окончена, и на дисплее – «разрыв цепи».

Вот в этом случае можно смело констатировать, что и пробой отсутствует (заряженный конденсатор не проводит ток), и обрыва точно нет, так как мы наблюдали за процессом зарядки.

Справедливости ради заметим следующее – у показанного мультиметра предел измерений электрического сопротивления ограничивается 60 мегаомами. Именно это обстоятельство, скорее всего, и позволило наблюдать процесс зарядки этого сравнительно небольшого по емкости конденсатора. Был бы предел в 2 МОм – скорее всего, весь этот замер уложился бы в доли секунды, и стал практически незаметным. Ну что ж – явный плюс приборам с расширенным диапазоном.

Теперь проверим омметром полярные электролитические конденсаторы. Принцип не меряется. Правда, при использовании мультиметров с выделенными диапазонами рекомендуется установить предел примерно в 200 кОм. Дело в том, что для многих подобных конденсаторов считается нормальным сопротивление утечки более 100 кОм, для некоторых, наиболее качественных, заявляемый допустимый предел – 1 МОм. Так что в большинстве случаев если будет достигнуто сопротивление в 200 кОм  —  можно судить об отсутствии пробоя, обрыва и пригодности такого конденсатора к работе. Впрочем, на всякий случай можно установить тот же предел в 2000 кОм и даже, если не жаль элементов питания мультитестера – попытаться  дождаться полной зарядки.

Попробуем поэкспериментировать с электролитическими конденсаторами разных номиналов емкости, применяя мультиметр ZT102, то есть с «плавающим» пределом измерений сопротивления.

Первым проверим конденсатор с номиналом 10 μF. Внешне на нем нет никаких признаков неисправностей.

Подготовка к измерениям – мультиметр переведен в режим омметра

То, что к выводам конденсатора в демонстрируемом примере припаяны проводки – никого не должно вводить в заблуждение. Если длина выводов позволяет проводить измерения напрямую щупами или зажимами-«крокодилами», то никакие удлинения не нужны. А в данном случае проводки припаяны только для того, чтобы освободить руки во время замера для фотографирования. При всех достоинствах этого мультитестера есть у него и недостаток – не предусмотрена отдельная контактная панель для проверки конденсаторов.

Безусловно, очень удобно, когда мультитестер имеет специальную колодку с гнёздами именно для проверки конденсаторов – можно не мучиться с проводами

Разный цвет припаянных проводков – чтобы не перепутать полярность, так как здесь это уже имеет значение. Черный измерительный провод (СОМ) мультитестера должен идти на «минус» конденсатора, красный, соответственно, на «плюс».

Подключаем щупы к конденсатору.

Показатели сопротивления неуклонно повышаются

Показатели на дисплее довольно быстро, буквально за секунду, пересекли рубеж в 1 мегаом и продолжают повышаться.

Достигнуто значение в 20 МОм – на этом решено остановиться.

Рост показателей сопротивления, в отличие от неполярных конденсаторов, не столь стремительный. При выходе на 20 мегаом решено проверку закончить – и без того понятно, что ни обрыва, ни пробоя, ни значимого тока утечки нет.

Вторым на очереди – конденсатор с номиналом 470 μF. Если приглядеться к нему, то явно видно начинающееся вздутие крышки.

Намечающееся вздутие верхней стенки корпуса уже говорит о предполагаемой непригодности конденсатора. Но просто для интереса и сравнения проведем проверку.

По идее – его и проверять-то не стоит, но все-таки посмотрим, в чем окажется выраженной его уже заметная внешне дефектность.

На первом этапе замера показатели сопротивления росли до определенного предела

Поначалу проверка шла «штатным образом» — сопротивление нарастало с сотен килоом до 5. 7 МОм. Но, в отличие от ранее проверяемых элементов, затем запустился обратный процесс – сопротивление стало неуклонно снижаться.

После достижения какого-то максимума сопротивление стало падать…

Это уже явно говорит о нарастании тока утечки. Как знать, может утечка лежит пока в допустимых пределах, но признак явно тревожный. Тем более что снижение сопротивления не останавливается – просто опыт прекращен, чтобы не садить впустую питание мультиметра.

Падение показателя сопротивления продолжается – просто замер решено закончить, так как картина и без того проясняется.

То есть вздутие конденсатора уже не прошло даром – дефект явно имеется. Дополнительно проверим этот элемент, когда перейдем к измерению емкостей.

Наконец, самый большой по емкости из взятых на проверку электролитический конденсатор – номинал в 2200 μF.

Первые показания сопротивления – около 50 кОм, но очень быстро повышаются.

Показания на дисплее стартовали с уровня примерно в 50 кОм, но стабильно и довольно быстро растут — происходит зарядка конденсатора, а емкость у него весьма значительная. Вскорости показания превышают 500 кОм, и в районе 600 кОм стабилизируются.

На этом уровне рост прекращается, и показания достаточно стабильные, с небольшими колебаниями в несколько килоом в одну и другую стороны.

Что ж, значение сопротивления достаточно велико и вполне входит в допустимые пределы для электролитического конденсатора столь высокой ёмкости. А стабильность показания на пике говорит и о стабильности тока разрядки, который также, по все видимости, не выходит за рамки дозволенного. Предварительный вывод: конденсатор в исправном состоянии – нет ни пробоя, ни обрыва, ни чрезмерного тока утечки.

Проверить конденсаторы измерением их сопротивления вполне можно и стрелочным (аналоговым) тестером. Кстати, там этот процесс выглядит даже более наглядно. При подключении тестируемого элемента стрелка обычно сначала отклоняется вправо, а затем начинает движение в сторону увеличения значения, то есть к левому краю, к «бесконечности».

При работе с аналоговым (стрелочным) прибором не забываем, что шкала сопротивления (в данном примере она верхняя, зеленого цвета) возрастает в не совсем привычном направлении – против часовой стрелки, справа налево.

В остальном же принцип проверки никак не меняется. А наглядность подобной «ревизии» конденсаторов нередко у некоторых мастеров делает именно такой способ даже более предпочитаемым.

Проверка конденсаторов функцией измерения емкости

Итак, косвенная проверка с помощью омметра способна в некоторых случаях сразу обнаружить явно непригодные к дальнейшему использованию конденсаторы. Например, результаты измерений указывают на явный пробой между укладками или чрезмерно низкие показатели сопротивления. Но часто картина остается неполной – элемент попадает «под подозрение», но «приговор» выносить вроде бы еще нет оснований, так как налицо только косвенные признаки неисправности.

Кстати, в подобных случаях иногда выручает «сравнительная экспертиза». То есть если имеется заведомо исправный конденсатор с точно таким же номиналом, можно провести сравнения полученных значений сопротивления с вызывающим сомнения элементом. По идее, при испрвности они должны быть очень близки между собой.

Но опять же, например, диагностировать обрыв на конденсаторе малой емкости – практически невозможно. Показатели омметра мгновенно уходят в «бесконечность», что свойственно и для отсутствия пробоя.

Специальный прибор для измерения емкости конденсаторов, требующий предварительной установки предела измерений.

Единственно действительным достоверным методом оценки в таких случаях видится замер емкости конденсатора. Для этого используются или специальные приборы для проверки конденсаторов (некоторые из них помимо емкости позволяют оценить и ESR), или мультиметры, в которых имеется такая функция.

В моем мультиметре ZT102 такая функция реализована, причем, тоже с «плавающей запятой», то есть не требующая установки единиц измерения и диапазонов – все это происходит автоматически. Поэтому попробуем проверить все те конденсаторы, которые ранее тестировались омметром – теперь уже на показатели ёмкости.

Начнем опять с неполярных конденсаторов.

Если вспомнить проверку омметром, то самый маленьким из тестируемых был керамический конденсатор 472. Что означает, согласно принятой маркировке, 47 pF × 10², то есть 4700 pF или 4,7 nF. Проверка сопротивления дала положительный результат, но не исключила возможности обрыва. Посмотрим, что покажет замер емкости.

Мультиметр переводится в соответствующий режим. На этом приборе, кстати, режим измерения емкости находится на том же положении переключателя, что и режим омметра, и выбирается кнопкой «SELECT».

Проверяется обычный керамический конденсатор, так что полярность роли не играет.

Проверка емкости маленького керамического конденсатора.

Значение выведено очень быстро (сказывается малая емкость), прибор сам определил и вывел на дисплей единицы измерения – нанофарады, и показал значение — 4.59 nF. Показания довольно стабильные, с очень незначительными колебаниями вверх-вниз. Не в «самое яблочко», но результат очень близок к указанному номиналу.

Можно констатировать что этот конденсатор – абсолютно «здоровый» и пригоден для дальнейшего использования.

Вторым по очереди стоит конденсатор емкостью в 1 μF. Как мы помним, его проверка омметром дала основания исключить и пробой, и обрыв. Остается выяснить его реальную емкость. Подключаем щупы к выводам конденсатора (без соблюдения полярности).

Проверка емкости конденсатора номиналом в 1 μF

На дисплее, после небольшой паузы – 983,5 nF, что равно 0,98 μF. Опять – показатель емкости не идеально точен с номиналом, но очень близок к нему. И что важно – стабилен.

Конденсатор следует признать полностью исправным

Далее – тройка полярных электролитических конденсаторов. Проверяем их в порядке по нарастанию емкости. Здесь, понятно, уже требуется соблюдение полярности подключения щупов.

Проверяется емкость конденсатора с номиналом 10 μF – получены четкие и стабильные показатели.

Конденсатор номиналом 10 μF дал при проверке значение 10,2 μF практически без колебаний в ту или иную сторону. Вопросов к нему – никаких нет.

Следующий – тот самый проблемный конденсатор номиналом 470 μF с признаками вздутия корпуса и повышенного тока разряда. Что покажет измерение емкости?

Так и есть – имеются явные дефекты и в этом вопросе:

Начальные показания после подключения «проблемного» конденсатора к щупам мультиметра.

Даже первичные показания прибора сразу дают понять, что измеренная емкость практически на четверть ниже номинала – всего 329 μF. Но и это еще не всё…

Показания дисплея уже спустя несколько секунд – значение емкости падает…

Показатель на дисплее нестабилен – имеется тенденция к снижению емкости, причем  довольно быстрому. Уже через несколько секунд значение упало до 309 μF и продолжает уменьшаться. Дальнейший замер – совершенно излишен, так как картина неисправности конденсатора вырисовалась в полной ясности.

Это лишнее подтверждение тому, что попытки продолжать использовать электролитические конденсаторы с признаками вздутия корпуса – совершенно бесплодны. Да и на их тестирование, повторимся, даже жалко тратить время – такие детали уже отслужили свое и подлежат безусловной утилизации. Иначе – жди или некорректной работы схемы, или ее полного выхода из строя, или, что еще «веселее» — «фейерверка» со взрывом корпуса.

Остался последний конденсатор – емкостью 2200 μF. Внешне и по результатам проверки омметром он не вызывал беспокойства.

Проверка показывает, что емкость даже несколько выше номинальной

Проведенный замер показал, что с конденсатором – все в порядке, если не считать несколько завышенной его емкости. На дисплее высветилось 2,489 mF = 2489 μF – вполне укладывается в допустимые рамки (обычно допустимые отклонения для емкости оцениваются в ± 15%). Но зато измеренное значение стабильно, без тенденции к увеличению или снижению.

Вывод — конденсатор во вполне пригодном к дальнейшему использованию состоянии.

Позволим себе маленькую ремарку.

Показанная последовательность проверки, то есть сначала омметром, а затем измерением емкости, вовсе не является обязательной. Измерением сопротивления просто демонстрировался способ, которым во многих случаях можно выявить явно неисправный элемент, если отсутствует прибор контроля емкости. Но, как мы помним, достоверность такой проверки бывает и неполной.

То есть в том случае, когда имеется возможность замера емкости, начинать следует прямо с него. Он однозначно покажет работоспособность конденсатора по всем пунктам – в случае обрыва, пробоя или большой утечки емкость или просто не поддастся измерению, или ее показатель будет очень далек от номинала, или, как было показано в рассмотренном примере, индицируемое значение будет нестабильным, с тенденцией к быстрому снижению.

Косвенная проверка конденсатора вольтметром

Эта проверка со вполне допустимой долей достоверности может показать, насколько хорошо конденсатор накапливает и удерживает полученный заряд. Правда, она возможна при довольно высоких показателях как емкости, так и напряжения, иначе используемый «визуальный подход» к оценке работы элемента может стать просто незаметным для восприятия.

Суть метода заключается в том, что вначале конденсатор следует зарядить от какого-то внешнего источника питания. Причем, рекомендуется, чтобы напряжение этого источника было примерно вдвое ниже указанного на конденсаторе предела. Скажем, для конденсатора, на котором указан предел в 25 вольт вполне подойдет блок питания на 12 вольт.

Обычно для зарядки хватает нескольких секунд. Кстати, пока идет зарядка будет нелишним для контроля проверить на клеммах источника питания, какое же точно напряжение подается на обкладки конденсатора.

После выполнения зарядки источник питания отключается. Мультитестер должен быть переведен в режим измерения постоянного напряжения в предполагаемом диапазоне (например, 20 вольт). Буквально через несколько секунд касаются щупами выводов конденсатора. Здесь важно проявить внимательность, так как главную ценность будет представлять показание вольтметра, снятое именно в момент первого касания – это значение должно быть максимально близким с напряжением, подаваемым при зарядке. Затем, естественно, по мере разрядки конденсатора через мультиметр, оно будет падать. Скорость его разрядки зависит от показателя емкости и от значения эквивалентного последовательного сопротивления (ЭПС).

Если первичное показание слишком далеко от «эталона» — это может говорить о слишком большом токе утечки и малопригодности конденсатора к нормальной работе.

Впрочем, такой способ все же таит в себе и субъективную составляющую, зависящую от личного восприятия быстро изменяющихся показаний. То есть говорить о его полной объективности – сложно. Хотя явный дефект он, пожалуй, выявить поможет. А в сомнительных случаях все же лучше изыскать возможность полноценной проверки емкости конденсатора.

«Народный» способ – проверка конденсатора коротким замыканием

К такому методу зачастую прибегают для «проверки» мощных, в том числе – пусковых конденсаторов, работающих с напряжениями свыше 200 вольт.

Смысл заключается в зарядке конденсатора, часто – просто от сети переменного напряжения 220 вольт. А затем — его разрядкой путем короткого замыкания выводов отвёрткой или отрезком изолированного провода. При замыкании возникает мощная искра, говорящая о том, что конденсатор способен накапливать нешуточный заряд.

Замыкание выводов конденсатора большой емкости сопровождается мощным искровым разрядом.

Сразу будет сделана оговорка – не зря слово «проверка» выше было взято в кавычки. Автор этой публикации ни в коем случае не рекомендует выполнять подобное тестирование, особенно тем людям, кто делает только первые шаги на поприще электротехники.

  • Во-первых, это крайне небезопасно. При малейшей неосторожности можно получить очень чувствительный, а иногда – и весьма опасный для здоровья электрический удар. Особую опасность представляет случайное замыкание контактов заряженного конденсатора обеими руками. Траектория тока «из руки в руку» проходит через наиболее уязвимую область тела человека, через сердце, что порой заканчивается очень печально.
  • А во-вторых, объективной картины работоспособности конденсатора таким путем все равно получить невозможно. Признайтесь, сможете ли вы отличить искру, вызванную разницей потенциалов в 200 вольт, от искры, для которой потребовалось всего 100 вольт? Вряд ли. Так что говорить о полной пригодности, о полноценной емкости и допустимой утечке – все же преждевременно. Так стоит ли «огород городить»? Единственное, на что способна такая проверка — выявить совершенно неисправный конденсатор.

Можно ли проверить конденсатор, не выпаивая его с платы?

Для полноценной проверки конденсатора, уже стоящего в схеме, его все же рекомендуется выпаять из платы. Дело в том, что другие элементы схемы способны оказывать влияние на измеряемые показания, и картина получатся явно недостоверной.

Понятно, что лишний раз заниматься выпаиванием конденсатора никому не хочется, что и вызывает вынесенный в заголовок подраздела вопрос.

Однозначного ответа нет. Если точнее, то существует несколько методов, которые могут дать определенный эффект, но не всегда они просты и оправданы.

  • Некоторые современные приборы, предназначенные именно для тестирования конденсаторов, сразу разрабатывались с учетом возможности проверок без проведения демонтажа элементов схемы. Если есть возможность воспользоваться подобным тестером – то это существенно упрощает решение вопроса.

Удобный компактный прибор, позволяющий снимать показания емкости конденсаторов непосредственно на монтажной плате.

Поднаторевшие в радиоэлектронике мастера зачастую создают некое подобие таких приборов и самостоятельно. Причем, охотно делятся и разработанными схемами, и опытом их эксплуатации. Например, ниже показана одна из таких схем с кратким ее описанием – возможно, кто-то возьмет себе на заметку.

Схема и описание самодельного прибора для «ревизии» конденсаторов без их выпаивания из платы.

Если ничего из выше перечисленного нет, придётся обходиться другими мерами.

  • Конденсатор можно выпаять частично, то есть одним выводом. После этого – провести проверку мультиметром. Правда, получается это  далеко не всегда, так как в большинстве случаев эти детали изначально впаиваются с «низкой посадкой», а с электролитическими конденсаторами такой подход и вовсе невозможен.
  • Одним из путей, когда выпаивание видится трудноосуществимым, может стать «изоляция» конденсатора на плате подрезкой дорожек, идущих к соседним элементам схемы.

Дорожки аккуратно перерезаются скальпелем, чтобы оставить конденсатор «в одиночестве». Затем, после проверки, важно не забыть восстановить их целостность.

Метод, конечно, «варварский», особенно в том случае, если идет поиск неисправного элемента – эдак можно и всю плату «перепахать». Кроме того, если плата – не с односторонней печатью, то к такому способу и вовсе не стоит прибегать.

  • Возможно, если выпаивание конденсатора сопряжено с определенными сложностями, проще «поднять ножки» расположенных с ним в последовательной цепи элементов, например, резисторов. Так будет устранено их влияние на тестируемый элемент.
  • Наконец, есть еще один способ убедиться в необходимости замены неработающего конденсатора. Заключается он в том, что непосредственно к выводам детали, работоспособность которой вызывает сомнения, параллельно припаивается новый конденсатор точно такого же номинала, но заранее проверенный и гарантированно рабочий. Естественно, если это полярный конденсатор, то с соблюдением правильного расположения «плюса» и «минуса».

После этого проводится тестовый запуск схемы (устройства). Если заметны улучшения, или работоспособность полностью восстановлена – можно провести выпаивание старого конденсатора и монтаж нового. Если же никаких позитивных изменений не последовало – следует продолжить поиск неисправности в ином месте, так как вряд ли именно исследуемый конденсатор послужил причиной неполадок.

Завершим сегодняшнюю публикацию демонстрацией видео, в котором также речь идет о неисправностях конденсаторов и возможных способах их выявления.

Видео: Какие неисправности случаются в конденсаторах, и как их выявить.

Как правильно проверить, работает ли конденсатор?

Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Способ №1 – Мультиметр в помощь

Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.

Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.

Измеряем сопротивление

Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.

После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.

Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!

После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.

Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.

Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.

Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.

Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.

Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.

Измеряем емкость

Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).

Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.

Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.

Измеряем напряжение

Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.

После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.

Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!

Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.

Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:

Как проверить целостность «кондера»

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Как проверить конденсатор мультиметром: пошаговый иструктаж

Конденсаторы присутствуют в различной технике. Они же часто являются и причиной неисправностей. Чтобы оперативно выявить неисправный элемент и заменить его, нужно знать, как проверить конденсатор мультиметром, поскольку это самый простой способ.

Мы расскажем как использовать недорогой, но функциональный прибор в выявлении неисправных элементов. В представленной нами статье разобраны разновидности конденсаторов и порядок их проверки. С учетом наших советов вы без затруднений найдете “слабое звено” в электрической схеме.

Что такое конденсатор и зачем нужен?

Промышленность производит конденсаторы самых разных типов, применяемых во многих отраслях. Они необходимы в автомобиле- и машиностроении, радиотехнике и электронике, в приборостроении и производстве бытовой техники.

Конденсаторы — своего рода «хранилища» энергии, которую они отдают при возникновении кратковременных сбоев в питании. Кроме того, определенный вид этих элементов отфильтровывает полезные сигналы, назначает частоту устройств, генерирующих сигналы. Цикл разрядки-зарядки у конденсатора очень быстрый.

Такой электрический компонент, как конденсатор, состоит из пары проводников (токопроводящих обкладок). Между собой они разделены диэлектриком. В цепь, которая пропускает ток постоянного характера, включать его нельзя, поскольку это равнозначно разрыву

В цепи с переменным током обкладки конденсатора поочередно перезаряжаются с частотой протекающего тока. Объясняется это тем, что на зажимах источника такого тока периодически происходит смена напряжения. Результатом таких преобразований является переменный ток в цепи.

Так же как резистор и катушка, конденсатор проявляет сопротивление току переменного характера, но для токов разных частот оно разное. К примеру, хорошо пропуская высокочастотные токи, он одновременно может являться чуть ли не изолятором для низкочастотных токов.

Сопротивление конденсатора связано с его емкостью и частотой тока. Чем больше два последних параметра, тем его емкостное сопротивление ниже.

Полярные и неполярные разновидности

Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

Особенности полярных конденсаторов

Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.

Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

Отличия неполярных конденсаторов

Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.

Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

Все конденсаторы делят на детали общего назначения и специального, которые бывают:

  1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
  2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
  3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
  4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
  5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

Порядок проверки мультиметром

Проверку конденсаторов лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.

Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы

Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.

Как проверить полярный конденсатор?

При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.

Технология измерения конденсатора для выявления неисправностей мультиметром следующая:

  1. Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
  2. Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
  3. Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.

Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.

Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе. Это намного удобней

Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.

Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.

Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.

Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.

Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.

Обследование неполярного конденсатора

Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.

При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали

Во время зарядки элемента от мультиметра возможно проверить его исправность, если  емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.

Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. автоматического выключателя. Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.

Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.

Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком

Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.

Измерение емкости конденсатора

Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.

Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.

Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.

Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.

Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.

Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения

Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.

На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.

Измерение напряжения мультиметром

Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.

Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.

Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений

Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.

Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.

Проверка конденсаторов без выпаивания

Конденсаторы можно и не выпаивать из платы для проверки. Единственное условие — плата должна быть обесточена. После обесточивания необходимо немного подождать, пока конденсаторы разрядятся.

Следует понимать, что получить 100% результат без выпаивания элемента из платы не получится. Детали, находящиеся рядом, мешают полноценной проверке. Можно удостовериться только в отсутствии пробоя.

С целью проверить на исправность конденсатор, не выпаивая его, к выводам конденсатора просто прикасаются щупами, чтобы измерить сопротивление. Исходя из вида конденсатора, будет отличаться и измерение этого параметра.

Рекомендации по проверке конденсаторов

Есть у конденсаторных деталей одно неприятное свойство — при пайке после воздействия тепла они восстанавливаются очень редко. В то же время качественно проверить элемент можно только выпаяв его со схемы. Иначе его будут шунтировать элементы, находящиеся рядом. По этой причине следует учитывать некоторые нюансы.

После того как проверенный конденсатор будет впаян в схему, нужно ввести в работу ремонтируемое устройство. Это даст возможность проследить за его работой. Если его работоспособность восстановилась или оно стало функционировать лучше, проверенный элемент меняют на новый.

Комбинированный прибор мультиметр, особенно оснащенный режимом проверки емкости, дает возможность точно, быстро, а главное достоверно проверить конденсаторные детали

Чтобы сократить проверку, выпаивают не два, а только один из выводов конденсатора. Необходимо знать, что для большинства электролитических элементов этот вариант не подходит, что связано с конструктивными особенностями корпуса.

Если схема отличается сложностью и включает большое число конденсаторов, неисправность определяют посредством измерения напряжения на них. Если параметр не соответствует требованиям, элемент, вызывающий подозрения, необходимо изъять и выполнить проверку.

При обнаружении сбоев в схеме нужно проверить дату выпуска конденсатора. Усыхание элемента в течение 5 лет работы в среднем составляет около 65%. Такую деталь, даже если она в рабочем состоянии, лучше заменить. В противном случае она будет искажать работу схемы.

Для мультиметров нового поколения максимумом для измерения является емкость до 200 мкФ. При превышении этого значения контрольный прибор может выйти со строя, хотя он и оснащен предохранителем. В аппаратуре последнего поколения присутствуют smd электроконденсаторы. Они отличаются очень маленькими размерами.

Среди конденсаторов в корпусах smd самой популярной является серия FK. Они обладают емкостью 1500 мФ максимум, предельным рабочим напряжением 100 В. Имеют автомобильный сертификат AEC-Q200

Отпаять один из выводов такого элемента очень сложно. Здесь лучше приподнять один вывод после отпаивания, изолировав его от остальной схемы, или отсоединить оба вывода.

О том, как мультиметром проверять напряжение в розетке, узнаете из следующей статьи, прочитать которую мы очень советуем.

Выводы и полезное видео по теме

Видео #1. Подробно о проверке конденсатора посредством мультиметра:

Видео #2. Ревизия конденсатора на плате:

Нет смысла приобретать сложное оборудование для диагностики конденсаторов. Вполне можно использовать с этой целью мультиметр с соответствующим диапазоном измерений. Главное — уметь грамотно применить все его возможности.

Хотя это и не узкоспециализированный прибор и пределы его ограничены, для обследования и ремонта большого числа популярных радиоэлектронных устройств, этого достаточно.

Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фото и задавайте вопросы по теме статьи. Расскажите о том, как проверяли конденсаторы на работоспособность. Делитесь полезными сведениями, которые пригодятся посетителям сайта.


Смотрите также

Возврат к списку