Оснащение современного автомобиля делает процесс управления простым. В то же время нельзя сказать, что это уж слишком легкое дело. Требуется учитывать много нюансов, чтобы не оказаться на обочине не только дороги, но и жизни. Важны дорожные изгибы, погодные условия, опыт вождения и многое другое. Автомобиль способен вести себя на дороге непредсказуемо. Утрата контроля может спровоцировать аварию. Как предотвратить такое развитие событий?
Содержание:
Это можно сделать с помощью ESP. Под этой аббревиатурой скрывается система, обеспечивающая курсовую устойчивость. С позиции английского языка расшифровывается так: Electronic Stability Program.
Под ней понимается система безопасности, которая посредством компьютера управляет автомобилем в нестандартных ситуациях. Если автомобиль теряет устойчивость на дороге, то есть начинает выписывать опасную траекторию, то его положение принудительно выравнивается.
ESP не является единым обозначением систем динамической стабилизации. Перед нами популярная торговая марка и не более. Поэтому будем рассматривать именно ее. Хотя своя популярность есть и у других подобных систем, например, ESC и DSC.
Первый патент на систему рассматриваемого вида был выдан в 1959 году. Разработка называлась «Управляющее устройство». Ее инициатором стал концерн Daimler-Benz. Результат оказался посредственным. Инженеры концерна не смогли предложить продукт, который мог бы стать реальным помощником водителя.
Все изменилась спустя много лет. В 1994 году премиальные Мерседесы получили оснащение полноценной системой безопасности. Несколько позднее курсовая стабилизация стала доступна на серийных машинах компании Mercedes-Benz.
Сама по себе ESP не способна выполнять возложенные на нее задачи. В помощь требуются электронные датчики. Обработкой поступающих от них сигналов занимается специальный блок. Электроника вовремя информирует систему о неадекватном поведении автомобиля, что дает возможность вернуть контроль над транспортным средством.
Перечень составных элементов формируется за счет:
К помощникам также относят следующие системы:
Курсовая стабилизация посредством ESP невозможна без ABS. Антиблокировочная система – это важный момент корректировки поведения автомобиля. Процесс стабилизации также обеспечивается за счет функциональности антипробуксовочной системы и блока, способного изменять режим работы двигателя.
ESP определяет развитие заноса по нескольким параметрам. Например, при малом угле поворота колес может фиксироваться превышение поперечного ускорения и значительное изменение угла поворота транспортного средства. Это выходит за рамки «правильной езды», поэтому система начинает действовать.
На практике происходит подтормаживание конкретных колес или ослабление тормозного усилия. Гидромодулятор изменяет состояние тормозной системы в части ее давления. Работа силового агрегата корректируется. Блок-контроллер сокращает подачу топлива, что уменьшает крутящий момент, передающийся на колеса. В результате машине придается прежняя траектория.
В структуре имеется главный блок, принимающий и обрабатывающий информацию, поступающую от датчиков. Под такой информацией понимается несколько моментов: с какой скоростью вращаются колеса, в каком положении руль и насколько давление в тормозной системе соответствует норме. На основе подобных данных ESP принимает решение, как ей действовать. При этом наиболее важны сигналы от двух датчиков, считывающих поперечное ускорение и угловую скорость.
Рассмотрим на примере упрощенную схему того, как происходит курсовая стабилизация.
На блок-контроллер поступают данные:
Если вы опытный водитель, то поддадите газу и постараетесь выйти из заноса. Ключевое слово здесь «опытный», но за рулем в большинстве своем оказываются те, кто не был в подобных ситуациях. Они могут растеряться. Также стоит учитывать невнимательность. Именно здесь и возникает необходимость в ESP.
Система возвращает автомобиль на прежний курс с помощью торможения переднего колеса с внешней стороны.
Датчики сигнализируют о нестандартном поведении транспортного средства:
Система стабилизирует автомобиль, что достигается торможением заднего колеса с внутренней стороны.
Эксплуатируемые в странах ЕС автомобили оснащаются ESP, что узаконено с 2014 года. Это обязательно для минимальной комплектации. Что касается России, то такое правило также имеется, но оно действует лишь при сертификации новых авто. Для остальных машин усовершенствование этого плана возможно только за дополнительную плату.
При желании и определенном умении можно установить ESP самому. Для этого необходимо знать, какие элементы системы нужны, куда они устанавливаются, как использовать сканер и соответствующее ПО. В остальном надо будет приобрести:
Сигнал о том, что ESP вышла из строя, поступает на приборную панель, где имеется контрольный указатель. Такая ситуация возможна в результате:
В любом случае надо вовремя реагировать на сигнал неисправности. Для конкретизации проблемы требуется проведение компьютерной диагностики.
Некоторые автолюбители считают, что ESP – это препятствование нормальному вождению и невозможность выхода из критических ситуаций. Последнее утверждение верно, но отчасти. Процент неадекватного поведения ESP ничтожно мал.
Система, обеспечивающая курсовую устойчивость, эффективна. Она не позволяет водителям вести себя на дроге слишком вольготно. Пресекаются попытки вождения, выходящие за рамки дозволенного. Потеря же мощности на скользких покрытиях в условиях бездорожья покрывается электронной имитацией блокировок, что помогает преодолевать препятствия, когда происходит диагональное вывешивание.
ESP (Electronic Stability Program) — самая распространённая из множества существующих на сегодняшний день аббревиатур, обозначающих одно и то же: систему динамической стабилизации автомобиля. В зависимости от производителя буквы в названии этой системы могут быть разными — ESC, VDC, VSC, DSC, DSTC, но суть везде едина: в опасных ситуациях эта электроника помогает вам справиться с автомобилем.
Задача ESP заключается в том, чтобы контролировать поперечную динамику автомобиля и помогать водителю в критических ситуациях — предотвращать срыв автомобиля в занос и боковое скольжение. То есть сохранять курсовую устойчивость, траекторию движения и стабилизировать положение автомобиля в процессе выполнения манёвров, особенно на высокой скорости или на плохом покрытии. Иногда эту систему называют «противозаносной» или «системой поддержания курсовой устойчивости».
Прообраз ESP под названием «Управляющее устройство» был запатентован ещё в 1959 году компанией Daimler-Benz, но реально воплотить её удалось лишь в 1994 году. С 1995 года система стала серийно устанавливаться на купе Mercedes-Benz CL 600, а чуть позже ею комплектовались все автомобили S-класса и SL.
Сегодня система динамической стабилизации доступна, хотя бы в качестве опции, почти на любом автомобиле. Прямой зависимости от класса машины уже не существует. Так как же она работает?Современная ESP взаимосвязана с ABS, антипробуксовочной системой и блоком управления двигателем, она активно использует их компоненты. По сути, это единая система, работающая комплексно и обеспечивающая целый набор вспомогательных контраварийных мероприятий. Структурно ESP состоит из электронного блока-контроллера, который постоянно обрабатывает сигналы, поступающие с многочисленных датчиков: скорости вращения колёс (используются стандартные датчики АБС); датчика положения рулевого колеса; датчика давления в тормозной системе.
Но основная информация поступает с двух специальных датчиков: угловой скорости относительно вертикальной оси и поперечного ускорения (иногда это устройство называют G-сенсор). Именно они фиксируют возникновение бокового скольжения на вертикальной оси, определяют его величину и дают дальнейшие распоряжения. В каждый момент ESP знает, с какой скоростью едет автомобиль, на какой угол повёрнут руль, какие обороты у двигателя, есть ли занос и так далее.
Схема работы ESP
Обрабатывая сигналы с датчиков, контроллер постоянно сравнивает фактическое поведение автомобиля с тем, что заложено в программе. В случае если поведение автомобиля отличается от расчётного, контроллер понимает это как возникновение опасной ситуации и стремится исправить её.
Вернуть автомобиль на нужный курс система может, давая команду на выборочное подтормаживание одного или нескольких колёс. Какое из них надо замедлить (переднее колесо или заднее, внешнее по отношению к повороту или внутреннее), система определяет сама в зависимости от ситуации.
Слева: в поворот автомобиль входит со сносом. Обнаруживая это, система подтормаживает левое заднее колесо, стабилизируя движение машины.Справа: в повороте автомобиль заносит. Стабилизация осуществляется за счет приложения дополнительной тормозной силы к правому переднему колесу.
Притормаживание колёс система осуществляет через гидромодулятор АБС, создающий давление в тормозной системе. Одновременно (или до этого) на блок управления двигателем поступает команда на сокращение подачи топлива и уменьшение, соответственно, крутящего момента на колёсах.Система работает всегда, в любых режимах движения: при разгоне, торможении, движении накатом. А алгоритм срабатывания системы зависит от каждой конкретной ситуации и типа привода автомобиля. Например, в повороте датчик углового ускорения фиксирует начало заноса задней оси. В этом случае на блок управления двигателем подаётся команда на уменьшение подачи топлива. Если этого оказалось недостаточно, посредством АБС притормаживается внешнее переднее колесо. И так далее, в соответствии с программой.Кроме того, в автомобилях, оборудованных автоматической КПП с электронным управлением, ESP способна даже корректировать работу трансмиссии, то есть переключаться на более низкую передачу или на «зимний» режим, если он предусмотрен.днако существует мнение, что опытному водителю, способному ездить на пределе возможностей, эта система мешает. Такие ситуации действительно редко, но могут возникать — например, когда для выхода из заноса надо поддать газа, а электроника сделать этого не даёт — «душит» движок.К счастью, для опытных водителей во многих автомобилях, оборудованных ESP, предусмотрена возможность её принудительного отключения. А на некоторых моделях система допускает небольшие заносы и скольжения, давая водителю немного похулиганить, вмешиваясь, только если ситуация становится действительно критической.ESP является одной из важнейших частей комплекса активной безопасности автомобиля. Она исправляет ошибки в управлении и часто помогает выйти из ситуаций, в которых среднестатистический водитель на обычном автомобиле потерпел бы полное фиаско. Главное достоинство ESP — с ней автомобиль перестаёт требовать от вас навыков экстремального вождения. Вы просто поворачиваете руль — а машина сама будет думать, как вписаться в поворот.
Но имейте в виду — возможности ESP по исправлению опасной ситуации не беспредельны. Ведь законы физики обмануть нельзя. Поэтому надо помнить, что ESP хоть и значительно снижает шансы на попадание в аварию во многих сложных ситуациях, но не избавляет водителя от необходимости иметь голову на плечах.
ПРЕДУПРЕЖДЕНИЕ:
1. ESP может не работать должным образом, если шины или колёса, которые вы используете, не совпадают с рекомендованными в данной инструкции. Когда вы меняете шины или колёса, используйте только тот тип и размер, которые рекомендованы в данном пособии.2. ESP не будет работать должным образом, если шины накачаны не в соответствии с рекомендованным давлениям шин.3. ESP не может работать должным образом, если шины сильно стёрты. Заменяйте шины тогда, когда появятся следы износа шин в виде желобков на поверхности колеи.4. ESP не сможет работать должным образом, если на шинах установлена цепь противоскольжения.5. ESP не заменяет зимние шины или цепи противоскольжения на покрытых снегом дорогах.6. ESP не будет работать должным образом, если действующие части двигателя, например, муфта не соответствует стандартам на оборудование или она сильно повреждена.
7. Когда ESP начнёт работать неверно, не стоит ослаблять работу подвески.
Электронная программа стабилизации или, как ее обычно называют, система стабилизации движения. Срабатывает ESP в опасных ситуациях, когда возможна или уже произошла потеря управляемости автомобилем. Путем притормаживания отдельных колес система стабилизирует движение. Она вступает в работу, когда, например, из-за большой скорости при прохождении правого поворота передние колеса сносит с заданной траектории в направлении действия сил инерции, т.е. по радиусу большему, чем радиус поворота. ESP в этом случае притормаживает заднее колесо, идущее по внутреннему радиусу поворота, придавая автомобилю большую поворачиваемость и направляя его в поворот. Одновременно с притормаживанием колес ESP снижает обороты двигателя. Если при прохождении поворота происходит занос задней части автомобиля, ESP активизирует тормоз левого переднего колеса, идущего по наружному радиусу поворота. Таким образом, появляется момент противовращения, исключающий боковой занос. Когда скользят все четыре колеса, ESP самостоятельно решает, тормозные механизмы каких колес должны вступить в работу. Время реакции ESP — 20 миллисекунд. Работает система на любых скоростях и в любых режимах движения.Данная система пока является наиболее эффективной системой безопасности. Она способна компенсировать ошибки водителя, нейтрализуя и исключая занос, когда контроль над автомобилем уже потерян.Безусловно, ESP высокоэффективная система. Однако, в действительности ее возможности ограничены. Причиной этого являются законы физики, изменить которые электроника не в силах. Поэтому если радиус поворота слишком мал или скорость в повороте превышает разумные границы, даже самая совершенная программа стабилизации движения здесь не поможет.
Осенью 2006 года Bosch объявила о выходе своей новой разработки — ESP Premium. Главное отличие новой системы — большее количество нагнетателей тормозной жидкости: было два, стало шесть. За счет этого удалось значительно увеличить точность дозирования усилия и скорость срабатывания системы. ESP Premium будет работать в тандеме с системой Adaptive Cruise Control (адаптивный круиз-контроль).
(статью взял отсюда статья на дастер-форуме, а первоисточник я не нашел)
Сравнение Дастеров с ESP и без
Сравнение различных машин с ESP и без
Зачем автомобилю система стабилизации? Явно напрашивается ответ в стиле Капитана Очевидность. Однако ESP умеет гораздо больше, нежели чем просто удерживать машину на дороге…
ESC, DSC, VSC, DSTC, VDC, PTM, CST… Как только сегодня не изгаляются маркетологи автомобильных фирм, придумывая оригинальные обозначения для, в общем-то, одной и той же системы — динамической стабилизации.
А началось всё, кстати, ровно 20 лет назад. Когда в 1995 году компания Bosch начала поставлять инновационную на тот момент электронику марке Mercedes-Benz для комплектации дорогущей двухдверки S 600 Coupe. С тех пор контролем устойчивости обзавелись даже бюджетные малолитражки, а выпуск системы наладили почти два десятка фирм по всему миру. Ещё бы, ведь в Америке и Евросоюзе продажа новых автомобилей без стабилизации в базовом оснащении вот уже несколько лет как запрещена.
Первым серийным автомобилем с системой стабилизации считается роскошное купе Mercedes-Benz S 600, на котором ESP фирмы Bosch появилась в 1995 году. Впрочем, конкуренты ответили на этот выпад незамедлительно. В том же году свои варианты представили BMW и Toyota, следом подтянулись Audi и Volvo. А сегодня без электроники поддержания курсовой устойчивости в США и Евросоюзе уже не обходится ни одна, даже самая дешёвая, модельСразу скажу, в официальной терминологии систему поддержания курсовой устойчивости принято называть ESC — Electronic Stability Control. Но для простоты далее по тексту мы будем использовать именно историческое, знакомое всем, бошевское обозначение — ESP, что значит Electronic Stability Program или же (по-немецки) Elektronisches Stabilitätsprogramm. На суть дела это не повлияет.
Она призвана помочь водителю удержать машину на дороге, когда возможностей или умений человека за рулем для этого уже не хватает, или если он совершил ошибку. Одно время начинающие журналисты при описании какой-нибудь новой модели даже любили поговаривать, что, дескать, «строгий ошейник ESP мешает опытному пилоту показать всё своё мастерство». Враки, конечно, — современная стабилизация просто так вмешиваться в управление не станет. Хотя в случае опасности может это сделать довольно резко и грубо.
Но всё же доля правды в тех дилетантских словах есть. Ведь если копнуть глубже, то выяснится — на современном автомобиле ESP работает… практически постоянно! Как же так!? Давайте разбираться вместе.
Как видно из этой схемы, структура ESP немногим сложнее, чем у её прародительницы — ABS. Вся соль системы стабилизации — в другом гидравлическом блоке, новых датчиках и прочных электронных связях с другими системами машиныСначала поймём, откуда эта самая стабилизация вообще появилась. Фактически, ESP стала эволюционным развитием антиблокировочной системы тормозов — ABS. Ведь на современных автомобилях она позволяет контролировать тормозной контур каждого из колёс в отдельности. Скорости их вращения отслеживают специальные датчики, а блок управления по этим сигналам оценивает обстановку и выдаёт команду так называемому модулятору — хитрому блоку клапанов и гидроаккумуляторов. Именно он регулирует давление жидкости в каждом тормозном механизме, при необходимости оперативно его сбрасывая посредством откачивающего насоса с электроприводом. И вот однажды инженеры подумали — а почему бы этот самый насос не заставить работать как бы в обратную сторону? Чтобы, когда потребуется, не растормаживать, а наоборот — притормаживать одно из колёс?
Принцип работы системы стабилизации уже многим известен. Так что мы не будем на этом подробно останавливаться. А тем, кто с ESP знаком мало, рекомендуем посмотреть этот наглядный видеоролик — в нём всё доходчиво объясняется
Сказано — сделано. Так в середине 80-х годов прошлого века, задолго до дебюта самой ESP, родилась её первая «побочная» функция. На мощных моделях Toyota, Mercedes-Benz и BMW стали применять Traction Control (TC), то есть антипробуксовочную систему. Её назначение ясно из названия. Но всё же на всякий случай напомним, что она срабатывает, если водитель слишком сильно давит на газ, и колёса срываются в пробуксовку. Тогда, чтобы восстановить сцепление с дорогой, электроника задействует штатные тормоза и, если потребуется, уменьшает тягу двигателя. Алгоритм довольно примитивный, но эффективный. Наверное, каждый из нас зимой наблюдал в комбинации приборов жёлтую моргающую лампочку — признак работы TC. Без него стартовать на льду со светофора было бы гораздо сложнее, не так ли? Заднеприводные модели могут так вообще остаться на месте…
Так выглядит начинка рабочего модуля ESP. Не правда ли, впечатляет, сколько всего помещается в этой маленькой коробочке? Кстати, инфографика компании Bosch наглядно показывает, что с развитием системы стабилизации её главный блок становился не только легче и компактнее, но и «умнее» — память микропроцессора неуклонно увеличиваласьНо технологии шли вперёд. И постепенно электронный контроль появился не только в моторах, коробках передач или тормозах, но и в едва ли не в каждой системе машины. Это и привело к прорыву в области активной безопасности — появлению полноценной ESP. По сути, её блок управления стал главным органом чувств автомобиля. Сюда направили информацию от датчиков продольного и поперечного ускорений, поворота руля, вращения относительно вертикальной оси, нажатия на акселератор и тормоз, скорости вращения колёс и т.д., и т.п. Компьютер в режиме реального времени сравнивает текущие показатели с заложенными в память и оценивает — сможет ли, например, этот лихой водила при такой езде удержаться на траектории в повороте? Нет? Значит, пора принимать меры спасения.
Собственно, маркетологи сразу нашли, как за это зацепиться, чтобы привлечь больше покупателей. И попросили инженеров поставить в салоне автомобиля «волшебную» кнопку. В зависимости от назначения и типажа машины водителю разрешили или совсем вырубать ESP (что полезно, например, для внедорожников), или ограничивать её помощь. На моделях со спортивным уклоном это даёт возможность почувствовать себя крутым дрифтером без опаски убраться в первом же вираже. А Ferrari так пошла ещё дальше и научила свою стабилизацию поддерживать постоянный угол заноса — ведь раз человек отвалил такие деньги за суперкар, у него нет права опозориться.
Набирающие популярность системы активного круиз-контроля и автоматического аварийного торможения были бы невозможны без ESP. Каким бы способом не измерялась дистанция до препятствия впереди, команда на экстренную остановку в любом случае реализуется через модуль системы стабилизации. Кстати, даже если водитель в последний момент сам среагирует на опасность, остановиться ему всё равно будет проще. Ведь ESP заранее поднимет давление в системе и подведёт колодки к дискамНо есть у ESP и другие «секретные» функции, о которых рядовой автолюбитель обычно вообще не подозревает. Вот, например, распространённый случай. Дама в красках описывает подруге, как перед ней на светофоре резко затормозил какой-то идиот. Остановилась наша героиня в считанных миллиметрах от его бампера. Чуть бы зазевалась — и на тебе ДТП. И невдомёк нашей барышне, что ESP, скорее всего, сработала даже при торможении. Ведь, как показывает статистика, большинство из нас в экстренной ситуации бьёт по педали тормоза резко, но недостаточно сильно. Поэтому остановочный путь оказывается больше, чем мог бы быть. А электроника по нарастанию давления в системе это видит и активирует насос модулятора. Соответственно, тормозные механизмы развивают максимально возможное для данных условий усилие. Обычно такую функцию называют Brake Assist — ассистент торможения. Кстати, она может помочь не только хрупким барышням, но и брутальным мужикам, у которых на сухом асфальте и хороших покрышках тоже не хватает сил, чтобы «продавить» педаль до срабатывания ABS.
Теперь же я рискую навлечь на себя гнев автодилеров и маркетологов, поскольку раскрою их страшную тайну. Изрядная часть подобных водительских ассистентов и систем, которые зачастую входят в список опций и стоят немалых денег, на поверку оказываются… просто программными функциями ESP! Поскольку никаких дополнительных деталей в данном случае не требуется. Для активации продвинутых возможностей в буквальном смысле обычно достаточно поставить галочку в системном меню соответствующего блока управления. Само собой, для этого нужен диагностический сканер. Но такие вещи сегодня стоят копейки, так что энтузиасты многих автоклубов поставили электронный апгрейд своих машин на поток.
Когда тормоза обычного дорожного автомобиля раскаляются, их эффективность падает. Чтобы этого не заметил водитель, ESP автоматически повышает давление в системе, сильнее прижимая колодки к дискам. Получается своего рода дополнительный гидроусилитель тормозовА между тем, практически бесплатно можно получить весьма полезные вещи. В частности, на многих моделях концерна Volkswagen легко активируется функция XDS — имитация динамической блокировки дифференциала. В поворотах ESP станет подтормаживать внутреннее разгруженное колесо, направляя крутящий момент на внешнюю шину, имеющую лучший зацеп. Тем самым, вы станете реже вспоминать, что такое снос передней оси.
Также легко можно подключить ассистент трогания на подъёме. В этом случае при отпускании педали тормоза ESP будет несколько секунд сохранять давление в тормозных механизмах — до тех пор, пока тяги мотора не станет достаточно для уверенного старта без отката назад.
Удивительно, но ESP умеет измерять даже… давление в шинах! Не напрямую, конечно, а косвенно — при помощи датчиков скорости вращения колёс. Работает простая математика. Если шина спустила, значит, её диаметр стал меньше, соответственно крутится она теперь быстрее других. Это и отслеживает блок управления. Появились подозрения на утечку воздуха? Водитель тут же увидит предупреждение в комбинации приборов.
Скандал с переворотом Mercedes-Benz A-класса во время «лосиного теста» в 1997 году не только ускорил внедрение ESP, но и привёл к появлению ещё одной чисто программной функции — защиты от опрокидывания. Суть этого ассистента в том, что электроника отслеживает не только собственно скольжения, но и уровень боковых ускорений, который при данной загрузке машины может привести к её перевороту. Сейчас функцией ROP (Rollover Protection) располагают многие внедорожники, пикапы и кабриолеты. Причём у последних ESP отвечает ещё и за активацию выдвижных дуг безопасностиТакже косвенно ESP способна определить наличие прицепа. Раз замкнулся электроразъём (попросту — розетка) «фаркопа», значит, автомобиль превратился в тягач. Теперь система перестроит свои алгоритмы с тем расчётом, чтобы исключить характерные колебания кормы и «болтанку» — электроника просто станет в противофазе подтормаживать передние колёса. Опять же неимоверно просто, но насколько полезно!
Хотите ещё волшебства? Пожалуйста! Как вам связь ESP со стеклоочистителями и датчиком дождя? Когда они срабатывают, электроника понимает — начинается ливень, на дороге влажно и скользко. Тормозной путь будет увеличиваться. Чтобы хоть немного исправить ситуацию, модулятор поднимет давление в тормозных трубках и станет циклически подводить колодки к дискам, срезая на них водяную плёнку. Водитель этого даже не замечает, а механизмы приводятся в боевую готовность…
Святая святых — рулевое управление и то попало под вездесущее око ESP. Представьте: автомобиль заносит, водитель начинает крутить руль, но явно промахивается, допустим, не хватает опыта. Не беда! Электроника заставит электроусилитель подсказывать импульсами усилия, куда и на какой угол повернуть «баранку». Переусердствовал? Ощутишь тяжесть. Руль полегчал? Значит, всё делаешь верно. Кстати, этот же ассистент помогает при торможениях на миксте. Когда, например, левые колёса оказались на асфальте, а правые съехали на грунтовую обочину. Обычную машину тут же начнёт разворачивать, а оснащённую ESP — нет.
При необходимости стабилизация может вмешаться и в работу автоматической трансмиссии, на время заблокировав в ней переключения, чтобы скачки тяги на колёсах не нарушали баланс автомобиля.
Различные варианты имитации блокировок межколёсных дифференциалов — исключительно программная функция ESP. То есть для её реализации не нужны дополнительные датчики или детали. Тем не менее, например, владельцам кроссоверов с короткоходными подвесками этот ассистент здорово помогает на off-road
Даже на бездорожье ESP нашлось применение. Видели, как умело современные кроссоверы без жёстких блокировок справляются с диагональным вывешиванием и прочими затруднительными ситуациями? Разгруженные колёса помолотят в воздухе немного, как вдруг автомобиль дёрнется и медленно поедет дальше. Это ESP перераспределяет тягу на покрышки, имеющие лучший контакт с грунтом. Кстати, именно датчики системы стабилизации позволили реализовать превентивное срабатывание автоматического полного привода. Муфта для передачи тяги на заднюю ось на современных SUV замыкается не по факту пробуксовки передних колёс (когда порой уже поздно), а по тревожному сигналу блока ESP.
А вот впереди крутой спуск. Активируем Hill Descent Control (HDC) — ассистент спуска с холма. Отпускаем все педали и вуа-ля! Автомобиль под хруст тормозов плавно и ровно скатывается вниз. Опять же стоит сказать спасибо ESP — это тоже часть её программы.
Благодаря системе стабилизации едва ли не каждый полноприводный кроссовер обзавёлся ассистентом спуска с холма. Водителю надо просто задать курс рулём и отпустить обе педали. А электроника сама поддержит нужную скорость и подстрахует от разворота на склоне
И, повторюсь, всё это может быть реализовано на одной агрегатной базе, без серьёзной доработки начинки машины. В компьютерном мире такая фантастика называется читерством, сродни вводу в игре секретного кода на вечную жизнь или бесконечные патроны. Но в автомобильной среде за такое не наказывают. В конце концов, задача у нас всех общая — победить дорогу. Поэтому ESP действительно работает почти всегда: и при старте с места, и в движении, и при замедлении… Так что рассматривать систему стабилизации только лишь как средство последней надежды в наши дни уже неправильно.
По материалам: auto.mail.ru
Загрузка ...Система динамической стабилизации предназначена для контроля поперечной динамики автомобиля и предотвращение срыва автомобиля в занос и боковое скольжение посредством компьютерного управления моментами силы колес. Иногда эту систему называют «противозаносной» или «системой поддержания курсовой устойчивости». Она способна компенсировать ошибки водителя, нейтрализуя и исключая занос, когда контроль над автомобилем уже потерян.
Причиной большого числа ДТП является человеческий фактор. Даже при обычных условиях движения водитель и автомобиль могут достигнуть своих физических пределов вследствие, к примеру, неожиданного поворота дороги, внезапно появившегося препятствия или непредвиденного изменения состояния дорожного покрытия. Увеличение скорости также может привести к потере водителем уверенного контроля над автомобилем, если силы поперечного ускорения, воздействующие на автомобиль, в такой ситуации достигнут уровня, требующего от водителя слишком больших усилий.
При резком изменении сцепления шин с дорогой автомобиль внезапно начинает вести себя не так, как ожидает водитель, исходя из своего опыта. В таких экстремальных ситуациях водитель зачастую уже не способен самостоятельно стабилизировать автомобиль; как правило, в состоянии паники он своими действиями лишь усугубляет потерю устойчивости. В результате образуется значительное расхождение между продольным движением автомобиля и его продольной осью (угол дрейфа β). Даже путем поворота рулевого колеса в противоположном направлении обычный водитель сможет самостоятельно восстановить устойчивость лишь при угле дрейфа не более 8°.
Система динамической стабилизации (ESP) — именно под этим названием компания Bosch вывела на рынок свою систему управления динамикой движения — вносит значительный вклад в преодоление таких ситуаций, помогая водителю сохранить управляемость автомобиля в физических рабочих пределах. Датчики постоянно фиксируют поведение и водителя, и автомобиля. Путем сравнения фактического состояния с заданным, подходящим к той или иной ситуации, в случае значительных расхождений система вмешивается в работу тормозной системы и силового агрегата для стабилизации автомобиля (рис. «Боковая динамическая реакция легкового автомобиля с ESP» ).
Встроенная функциональность антиблокировочной системы (ABS) предотвращает блокирование колес при нажатии на тормоз, в то время как аналогично интегрируемая система управления тяговым усилием (TCS) предотвращает пробуксовывание колес при трогании с места и разгоне. ESP — это комплексная система, охватывающая возможности, выходящие далеко за рамки ABS и комбинации ABS и TCS. Эта система предотвращает отклонение автомобиля от курса с заносом задней оси (избыточная поворачиваемость) или передней оси (недостаточная поворачиваемость), автомобиль слушается руля в рамках физически возможного.
Система ESP базируется на испытанных и зарекомендовавших себя компонентах систем ABS и TCS. Таким образом, можно активно тормозить воздействуя на отдельные колеса с высоким уровнем динамической реакции. На крутящий момент двигателя и, соответственно, тягу и пробуксовывание колес можно повлиять с помощью системы управления двигателем. Эти системы сообщаются между собой, к примеру, по шине CAN.
Система динамической стабилизации (ESP) помогает повысить безопасность дорожного движения. Она улучшает поведение автомобиля на дороге в рамках физически возможного. Реакция автомобиля остается предсказуемой для водителя, и автомобиль становится более управляемым в критических ситуациях.
В рамках физических возможностей автомобиля курсовая устойчивость автомобиля улучшается во всех состояниях — при полном и частичном торможении, движении накатом, разгоне, обгоне и изменениях нагрузки, а также, к примеру, в случае экстремальных маневров (при панической реакции). Значительно снижается риск заноса.
В ряде ситуаций эффективность торможения достигается путем использования тяговых характеристик при вмешательстве ABS и TCS, и когда активировано управление тяговым крутящим моментом двигателя (автоматическое увеличение оборотов двигателя для подавления избыточного тормозного момента двигателя). Это приводит к сокращению тормозного пути и увеличению тяги, улучшению устойчивости и повышению уровня чувствительности рулевого управления.
Некорректные вмешательства систем могут сказаться на безопасности. Комплексная концепция безопасности обеспечивает своевременное обнаружение всех неисправностей, которых не удается избежать, и система ESP полностью или частично отключается в зависимости от типа неисправности.
Многочисленные исследования показали, что ESP значительно снижает количество ДТП, вызванных заносом, и уровень смертности в ДТП. Как следствие, оснащение автомобилей системой ESP стало обязательным в США и Канаде с сентября 2011 года. В Евросоюзе (ЕС), все новые легковые автомобили и легкие грузовики должны оснащаться системой ESP с ноября 2011 года (неотъемлемая часть ECE-R 13Н). Для остальных новых автомобилей установлен переходный период до конца 2014 года. В других регионах, например, в Японии и Австралии, также будут вводиться такие требования.
Система динамической стабилизации (ESP) использует тормозную систему автомобиля и силовой агрегат для коррекции продольного и поперечного движения автомобиля в критических ситуациях. Когда подключается система динамической стабилизации, она смещает приоритеты управления тормозной системой. Основная функция колесных тормозов-замедление и/или остановка автомобиля — становится вторичной по важности, поскольку происходит вмешательство ESP для сохранения курсовой устойчивости автомобиля. ESP может также ускорять приводные колеса путем вмешательства в работу двигателя, повышая устойчивость.
Оба механизма воздействуют на движение автомобиля. При движении по окружности в устойчивом состоянии существует определенная связь между усилиями на рулевом колесе и результирующим поперечным ускорением автомобиля и, соответственно, силами на шинах в поперечном направлении (эффект подруливания). Силы, воздействующие на шину в продольном и поперечном направлениях, зависят от пробуксовки шины. Это означает, что на движение автомобиля можно повлиять через скольжение шин. Торможение отдельных колес, например, заднего колеса на внутреннем радиусе поворота в случае недостаточной поворачиваемости или переднего колеса на внешнем радиусе поворота в случае избыточной поворачиваемости помогает как можно более точно выдержать заданную траекторию движения автомобиля.
![]() | ![]() |
Чтобы сравнить, как автомобиль будет вести себя в экстремальной ситуации с ESP и без ESP, рассмотрим следующий пример. Маневр движения отражает текущую ситуацию и базируется на программах моделирования, разработанных на основе результатов испытаний. Результаты были подтверждены последующими дорожными испытаниями.
![]() | ![]() |
На рис. «Курсовая устойчивость во время последовательного прохождения правого/левого поворота» изображена реакция автомобиля без ESP и автомобиля с ESP при прохождении серии S-образных участков с быстрым маневрированием и выруливанием на дороге с высоким коэффициентом сцепления шин с дорогой (μ = 1), без притормаживания и на исходной скорости 144 км/ч. На рис. «Кривые динамической реакции при последовательном прохождении поворотов» изображены кривые параметров динамической реакции. В начале, при приближении к S-образному участку, условия для обоих автомобилей и их реакции идентичны. Затем водители начинают маневрировать (фаза 1).
Как видно из рисунка, после начальной фазы резкое маневрирование у автомобиля без ESP уже угрожает потерей управляемости (рис. а, «Курсовая устойчивость во время прохождения поворотов» фаза 2). В то время как вращение руля быстро создало значительные поперечные силы на передних колесах, имеет место определенная задержка создания аналогичных сил на задних колесах. Автомобиль реагирует вращением по часовой стрелке вокруг своей вертикальной оси. Он лишь реагирует на попытки водителя вырулить (фаза 3), так как уже потерял управляемость. Резко возрастают скорость рыскания и угол бокового увода, и автомобиль срывается в занос (фаза 4).
Автомобиль с ESP стабилизируется после первоначального маневрирования путем активного торможения переднего левого колеса для устранения угрозы потери устойчивости (рис. b, «Курсовая устойчивость во время прохождения поворотов» фаза 2): это происходит без вмешательства водителя. Это действие ограничивает занос внутрь, уменьшая скорость рыскания и стабилизируя угол разворота при движении по инерции. После изменения направления поворота, свое направление сначала меняет момент, и затем — скорость вращения вокруг вертикальной оси (между фазами 3 и 4). В фазе 4, второе короткое нажатие на тормоз, на этот раз правого переднего колеса — полностью восстанавливает устойчивость. Автомобиль продолжает двигаться по траектории, заданной водителем.
Контроль характеристик управляемости в пределах физически возможного направлен на то, чтобы сохранить три степени свободы автомобиля в плоскости дороги — линейную скорость vx, поперечную скорость vy и скорость ψ вращения вокруг вертикальной оси — в контролируемых пределах. Задуманный водителем маневр преобразуется в динамическую реакцию автомобиля, адаптируемую к характеристикам дороги в рамках процесса оптимизации, нацеленного на обеспечение максимальной безопасности.
Система ESP состоит из автомобиля как управляемой системы, датчиков, определяющих вводные переменные, исполнительных органов для коррекции тормозных, движущих и поперечных сил, а также иерархически структурированных контроллеров — контроллера поперечной динамики (высший уровень) и контроллеров колес (низший уровень) (рис. «ESP — общая система управления» ). Контроллер высшего уровня определяет заданные значения для контроллеров низшего уровня в виде моментов или скольжения или их изменений. Внутренние системные переменные, не измеряемые напрямую, такие как угол дрейфа β определяются при оценке условий движения.
Чтобы определить номинальное поведение, анализируются сигналы, соответствущие командам водителя. Оцениваются сигналы от датчика положения рулевого колеса, датчика давления в тормозной системе (желаемое замедление, получаемое из тормозного давления, измеренного в гидравлическом блоке) и положения педали акселератора (желаемый крутящий момент двигателя). При вычислении номинального поведения также учитывается используемый потенциал коэффициента сцепления шин с дорогой и скорость автомобиля. Эти параметры оцениваются на основе сигналов, получаемых от датчиков частоты вращения колес, датчика поперечного ускорения, датчика скорости вращения вокруг вертикальной оси и датчика давления в тормозной системе. Затем вычисляется момент относительно вертикальной оси, который необходим для приближенного приведения параметров действительного состояния к параметрам требуемого состояния.
В целях получения требуемого момента рыскания необходимо, чтобы изменения в величинах тормозного момента и относительного скольжения колес определялись посредством контроллера ESP. Эти величины затем устанавливаются контроллерами низшего уровня — контроллерами относительного скольжения и тягового усилия с помощью исполнительного механизма гидравлической тормозной системы и привода управления работой двигателя.
Для определения стабилизирующих вмешательств важно не только знать сигналы от датчиков угловых скоростей колес vwhl, давление на впуске рAdm, скорость вращения вокруг вертикальной оси поперечное ускорение ψ, угол поворота рулевого колеса δ и крутящий момент двигателя, но и ряд других внутренних системных переменных, которые могут быть измерены косвенно. К ним, к примеру, относятся силы, действующие на шины в продольном, поперечном и нормальном направлениях (Fx, Fy и Fn), линейная скорость vx, значения относительного скольжения шин λi, угол бокового увода колес а на одной оси, угол дрейфа β поперечная скорость автомобиля vy и коэффициент сцепления μ. Они определяются по сигналам датчиков на базе вычислительных моделей.
Линейная скорость автомобиля vx имеет ключевую важность для всех контроллеров бокового увода колес и поэтому должна вычисляться с очень большой точностью. Это делается на основе автомобильной модели с использованием измеренных угловых скоростей колес. Здесь необходимо учитывать влияние многочисленных факторов. Скорость автомобиля vx уже в нормальных ситуациях вследствие торможения или пробуксовки отличается от линейных скоростей вращательного движения колес vwhl. У полноприводных автомобилей, в частности, необходимо учитывать особенности привода колес. На поворотах колеса, движущиеся по внутреннему радиусу, проходят по траектории, отличной от траектории колес на внешнем радиусе, следовательно, их скорости разные.
Управляемость автомобиля меняется при обычной эксплуатации в ответ на изменения нагрузки, сопротивления движению (например, уклон дороги или изменение типа покрытия, ветер) или износ (например, тормозных колодок).
При всех этих граничных условиях линейная скорость автомобиля должна оцениваться с отклонением в несколько процентов для обеспечения стабилизирующего вмешательства в необходимой степени.
Задачей контроллера поперечной динамики является вычисление фактического поведения автомобиля на основании, например, сигнала скорости вращения вокруг вертикальной оси и угла дрейфа, и сделать поведение автомобиля в экстремальной по динамике ситуации как можно более близким к поведению в обычной ситуации (номинальное поведение).
Связь, существующая при движении по окружности в устойчивом состоянии между скоростью вращения вокруг вертикальной оси и углом поворота рулевого колеса δ, линейной скоростью автомобиля vx и характеристическими переменными, используется для определения номинального поведения. Применяя одноколейную модель, получаем:
ψ = (vx / l) δ (1/ 1+(vx/vch)2)
в качестве базы для расчета номинального движения автомобиля. В этой формуле l означает расстояние между передней и задней осями. Геометрические и физические параметры модели автомобиля обобщены в «характеристической скорости автомобиля» vch.
В этом случае переменная ψ ограничивается соответственно текущим коэффициентам скольжения и конкретными свойствами динамики автомобиля и ситуации движения (инициируемые водителем торможение или разгон) и такими условиями, как наличие уклона или различие в коэффициентах скольжения (μ-разделение). Таким образом, команда водителя известна как номинальная скорость вращения вокруг вертикальной оси ψNom.
Контроллер поперечной динамики сравнивает измеренную скорость вращения вокруг вертикальной оси с номинальной и в случае значительных отклонений вычисляет момент вращения вокруг вертикальной оси, необходимый для совпадения переменной величины фактического состояния с номинальным значением. На более высоком уровне контролируется угол дрейфа β и по мере роста значений все в большей степени учитывается в расчете стабилизирующего момента вращения вокруг вертикальной оси ΔMZ. Эта выходная переменная контроллера применяется посредством входных переменных тормозного момента и проскальзывания отдельных колес, корректируемых контроллерами нижнего уровня.
Стабилизирующие вмешательства выполняются на всех колесах, торможение которых генерирует момент вращения вокруг вертикальной оси в требуемом направлении вращения, и на которых еще не достигнут предел передаваемых сил. У автомобиля с избыточной поворачиваемостью физический предел сначала превышается на задней оси. Поэтому стабилизирующие вмешательства выполняются на переднем мосту. У автомобиля с недостаточной поворачиваемостью ситуация обратная.
Номинальные значения относительного скольжения λ’Nom, запрашиваемые контроллером поперечной динамики, на отдельных колесах устанавливаются с помощью контроллеров колес, т.е. контроллеров низшего уровня (см. рис. «ESP — общая система управления» ). Различают следующие три случая.
Чтобы создавать как можно более точные величины момента вращения вокруг вертикальной оси, необходимые для стабилизации автомобиля, силы на колесах должны изменяться при определенных условиях путем контроля проскальзывания колес. Номинальная величина проскальзывания, запрашиваемая контроллером поперечной динамики на том или ином колесе в случае отсутствия торможения регулируется контроллером проскальзывания путем активного нагнетания давления. Для этого нужно как можно более точно знать величину текущего проскальзывания колеса. Оно вычисляется на основе сигнала измеренной скорости колеса и линейной скорости автомобиля vx. Номинальный тормозной момент на колесе образуется из отклонения фактической величины проскальзывания от номинальной с использованием PID- регулирования (пропорционально-интегральнодифференциального регулирования).
Колесо может подвергаться торможению не только в случае активного нагнетания давления контроллером поперечной динамики. После переключения на пониженную передачу и резком отпускании педали газа инерция движущихся деталей двигателя в определенной степени тормозит приводные колеса. При увеличении этой силы и соответствующего реактивного момента сверх определенного уровня шины теряют способность передавать результирующие нагрузки на дорогу и у них появляется тенденция к блокированию (например, из-за внезапного наезда на скользкий участок дороги). Тормозное проскальзывание приводных колес можно ограничить в случае движения накатом посредством регулировки тормозного момента двигателя. Водителем это воспринимается как «плавный разгон».
При торможении на отдельных колесах выполняются различные операции, в зависимости от ситуации:
Эти три требования должны координироваться таким образом, чтобы инициируемые водителем торможение и маневрирование реализовывались как можно полнее. Если управление колесами выполняется главным образом с целью максимального замедления автомобиля, то его можно выполнять на основании ускорения колес, надежно определеяемого по минимальной информации датчиков (управление неустойчивостью). Для регулировки продольных и поперечных сил на шине для стабилизации автомобиля необходимо применять принцип управления проскальзывания, так как он также позволяет управлять колесами в нестабильном диапазоне характеристики коэффициента сцепления / проскальзывания. Однако на основании имеющихся сигналов датчиков должна определяться абсолютная величина проскальзывания колеса до нескольких процентов, в зависимости от скорости автомобиля.
Задача контроллера ABS — обеспечить устойчивость и управляемость автомобиля в любых дорожных условиях и использование сцепления между шинами и дорогой в как можно большей степени. Будучи контроллером нижнего уровня по отношению к контроллеру поперечной динамики, он выполняет эти функции путем модулирования тормозного давления на колесе таким образом, чтобы обеспечивалась максимально возможная продольная сила при сохранении достаточной поперечной устойчивости. Однако в ESP измеряется больше переменных, чем в ABS, имеющей только датчики угловых скоростей колес. Таким образом, информация о движении колеса, такая как скорость вращения вокруг вертикальной оси или поперечное ускорение, получается путем прямого измерения с большей точностью, чем при модельной оценке на основании нескольких измеренных значений.
В определенных ситуациях можно повысить эффективность системы путем адаптации управления ABS посредством использования переменных из контроллера поперечной динамики. Когда автомобиль тормозит на неровной дороге (μ -разделение), на левых и правых колесах возникают очень разные тормозные силы. В результате возникает момент вращения вокруг вертикальной оси, на который водитель должен реагировать выруливанием, чтобы стабилизировать автомобиль. Скорость нарастания этого момента и быстрота последующей реакции водителя зависят от момента инерции автомобиля вокруг вертикальной оси. ABS вызывает задержку увеличения момента вращения вокруг вертикальной оси, сдерживая рост давления в колесном цилиндре переднего колеса с более высоким коэффициентом сцепления с дорожным покрытием. Эта функция ABS может также использовать информацию контроллера высшего уровня — контроллера поперечной динамики (по реакции водителя и поведению автомобиля) и, соответственно, даже еще лучше реагировать на фактическое движение автомобиля.
Если при торможении в повороте автомобиль при определенных условиях начинает поворачиваться, то тенденции к избыточной поворачиваемости можно противодействовать путем электронного распределения тормозных сил через уменьшение давления на отдельных колесах. Если этого недостаточно, то помогает контроллер поперечной динамики путем активного нагнетания давления на переднем колесе, движущемся по внешнему радиусу поворота (уменьшение поперечной силы). При недостаточной же поворачиваемости тормозной момент увеличивается на заднем колесе, движущемся по внутреннему радиусу поворота (при условии, что колесо не контролируется системой ABS) и слегка уменьшается на переднем внешнем колесе.
Если у автомобиля появляется тенденция к избыточной поворачиваемости при смене полосы с полным или частичным торможением, то уменьшается давление на заднем внешнем колесе (увеличение поперечной силы), и увеличивается давление на переднем внешнем колесе (уменьшение поперечной силы). При недостаточной поворачиваемости при торможении в повороте увеличивается тормозной момент в заднем колесе, движущемся по внутреннему радиусу поворота (при условии, что колесо еще не попало в диапазон вмешательства ABS) и слегка уменьшается на переднем внешнем колесе.
Как только приводные колеса начинают проскальзывать при активном движении, активируется контроллер низшего уровня — контроллер тягового усилия (TCS). На измеренную скорость колеса и соответствующее проскальзывания можно повлиять путем изменения баланса крутящего момента на каждом приводном колесе. Контроллер TCS ограничивает крутящий момент на каждом колесе до величины, которая может быть передана на дорогу. Таким образом, команда водителя реализуется после разгона настолько, насколько зто физически возможно, и одновременно обеспечивается фундаментальная курсовая устойчивость, так как слишком сильно уменьшаются боковые силы на колесе.
У автомобиля с активной осью в качестве регулирующих переменных используются средняя скорость колеса приводной оси.
vMWhl = 1/2 (vlWhl + vRWhl)
и разность скоростей vDif = vlWhl — vRWhl между левым vlWhl и правым vRWhl колесами.
Структура контроллера TCS изображена на рис. «Структура контроллера TCS». Опорные переменные контроллера поперечной динамики включаются в расчет номинального значения средней скорости колеса и разности скоростей колес, а также номинальных значений относительного скольжения и скоростей колес при движении накатом. При расчете номинальных значений vDifNom (номинальной разности скоростей приводных колес на одной оси) и vWhlNom (номинальной средней скорости колес), вводные переменные для изменения номинального относительного скольжения ΔλNom и допустимая разность величин относительного скольжения ΔλDlfTolNom приводной оси или осей корректируют базовые значения, вычисленные блоком TCS. Кроме того, тенденция к недостаточной или избыточной поворачиваемости, выявляемая контроллером поперечной динамики, через приращение номинального крутящего момента двигателя ΔМRedNom напрямую влияет на определение максимально допустимого приводного момента.
Динамическая реакция силового агрегата зависит от сильно изменяющихся режимов работы. Поэтому необходимо определить текущий режим работы (выбранная передача, включение сцепления), чтобы можно было адаптировать параметры контроллера к динамической реакции регулируемой системы и к не линейным характеристикам.
Поскольку на среднюю угловую скорость колеса влияют переменные инерционные силы, возникающие в приводе в целом (в двигателе, трансмиссии, на ведущих колесах, на карданном валу), то для описания её относительно медленной скорости динамической реакции используется относительно большая постоянная времени. Среднюю угловую скорость колеса контролирует нелинейный PID-контроллер, при этом, в частности, приращение l-компонента (в зависимости от режима работы) может варьироваться в широком спектре. В стационарном случае l-компонент является мерой крутящего момента, который может быть передан на колесо в точке контакта с поверхностью дороги. Выходной переменной этого контроллера является номинальный суммарный момент МMWhlNom.
И наоборот, постоянная времени для разности скоростей колес относительно мала и отражает тот факт, что собственные инерционные силы колес являются практически единственным определяющим фактором для динамической реакции. Кроме того, в отличие от средней скорости колес, двигатель влияет на неё лишь косвенно. Разность скоростей колес vDif контролируется нелинейным Pl-контроллером. Поскольку притормаживания приводного колеса вначале становятся заметными только через баланс крутящих моментов этого колеса, то они изменяют распределение межколесного дифференциала, имитируя его блокировку. Параметры этого контроллера блокировки межколесного дифференциала лишь в минимальной степени зависят от включенной передачи и влияний двигателя. Если дифференциальная скорость на приводной оси отличается от номинальной vDlfNom больше, чем это допустимо («мертвая зона»), то запускается вычисление номинального дифференциального момента MDlfNom. «Мертвая зона» расширяется, если тормозных вмешательств TCS необходимо избегать, например, при прохождении поворотов на пределах возможностей.
Номинальный суммарный и номинальный дифференциальный крутящие моменты являются основой для распределения позиционирующих сил между исполнительными механизмами. Номинальный дифференциальный момент MDlfNom задается разностью между крутящими моментами на левом и правом ведущих колесах путем активации соответствующего клапана в гидравлическом блоке (ассиметричное вмешательство тормозов). Номинальный суммарный момент МMWhlNom регулируется как вмешательствами двигателя, так и симметричным вмешательством тормозов.
У бензинового двигателя регулировки, предпринимаемые через дроссельный клапан, относительно медленно дают эффект (задержка и переходная реакция двигателя). Для быстрого вмешательства через двигатель используются задержка момента зажигания и еще одна опция — селективное подавление импульсов впрыска. В дизельных двигателях электронный блок управления (EDC) уменьшает крутящий момент двигателя путем изменения количества впрыскиваемого топлива. Для краткосрочной помощи в уменьшении крутящего момента двигателя можно применять симметричное тормозное воздействие.
Во внедорожных условиях особую роль играет тяговое усилие. Обычно у внедорожников управление тяговым усилием автоматически адаптируется путем идентификации ситуации для достижения наилучших уровней эффективности и надежности. Другие автопроизводители дают водителю возможность выбрать различные регулировки, от деактивации ограничения крутящего момента двигателя до адаптации к особым состояниям дороги (лед, снег, трава, песок, снежная каша, каменистый грунт).
Описанные выше базовые функции ESP могут также включать в себя дополнительные функции поперечной динамики для особых категорий автомобилей, таких как полноприводные универсалы или внедорожники (SUV) и легкие фургоны, а также для особых требований к стабилизации автомобилей.
Даже в нормальных условиях движения автомобиль может оказаться неспособным адекватно реагировать на вращение рулевого колеса (с образованием недостаточной поворачиваемости), если, к примеру, на повороте дорожное покрытие внезапно окажется мокрым или грязным. ESP может увеличить скорость вращения автомобиля вокруг вертикальной оси, создав дополнительный момент вращения. Это позволяет автомобилю пройти поворот с физически возможной максимальной скоростью. Ожидаемая частота вмешательств и требования к комфорту у разных типов автомобилей разные и поэтому имеются соответственно разные ступени расширения для выполнения таких тормозных вмешательств, которые влияют на поведение автомобиля при недостаточной поворачиваемости.
Если водитель захочет пройти поворот по меньшему радиусу, чем это физически возможно, то останется лишь уменьшение скорости автомобиля. Эту информацию можно считывать во время поворота в устойчивом состоянии по зависимости между радиусом поворота r, линейной скоростью автомобиля vx и скоростью вращения вокруг вертикальной оси ψ:
r = vx / ψ
Чтобы автомобиль оставался на заданной траектории, он — без применения момента вращения вокруг вертикальной оси — тормозится настолько, насколько это необходимо путем торможения всех колес (расширенное управление недостаточной поворачиваемостью, EUC).
Легкие грузовики и другие автомобили с высоким центром тяжести, такие как внедорожники (SUV), могут перевернуться при возникновении больших поперечных сил, например, из-за резкого руления при маневрах уклонения от препятствия на сухой дороге (очень динамичные ситуации вождения) или при медленном увеличении поперечного ускорения автомобиля до критического при съезде с автострады с уменьшающимся радиусом поворота на слишком высокой скорости (почти стационарные ситуации вождения).
Существуют особые функции (функции подавления опрокидывания, RMF), выявляющие эти критические ситуации с помощью обычных датчиков ESP и стабилизирующих автомобиль путем вмешательства в работу тормозной системы и двигателя. Для обеспечения своевременного вмешательства, в дополнение к маневрирующим действиям водителя и измеренной реакции автомобиля (скорость вращения вокруг вертикальной оси и боковое ускорение), для оценки поведения автомобиля в ближайшем будущем используется прогнозирующая модель. В частности, при выявлении надвигающейся опасности опрокидывания притормаживаются два колеса на внешнем радиусе поворота. Это действие уменьшает поперечные силы на колесах и, соответственно, критическое поперечное ускорение. Управление колесами должно выполняться с таким высоким уровнем чувствительности, чтобы, несмотря на сильно колеблющиеся вертикальные силы FN, управляемость не ухудшалась из-за тенденции к блокированию отдельных колес, особенно при очень динамичных маневрах уклонения. Уменьшение скоростей колес при притормаживании отдельных колес также помогает водителю удержать автомобиль на своей полосе. В почти стационарных ситуациях движения точно выверенное уменьшение крутящего момента двигателя также не позволяет водителю спровоцировать критическую ситуацию.
Момент стабилизирующего вмешательства и его интенсивность должны быть как можно точнее адаптированы к текущему поведению автомобиля. Это поведение может значительно изменяться с нагрузкой, к примеру, в случае с легкими фургонами и внедорожниками с багажниками на крыше. Такие автомобили используют дополнительные оценочные алгоритмы, вычисляющие массу автомобиля и изменение центра тяжести, вызванное распределением нагрузки, если это требуется для адаптации функций ESP (управление с адаптацией к нагрузке, LAC).
В зависимости от скорости движения автомобили с прицепом подвержены раскачиванию вокруг вертикальной оси. Если автомобиль с прицепом или автопоезд движется со скоростью меньшей «критической» (обычно 90 км/ч и 130 км/ч), эти раскачивающие движения адекватно и быстро гасятся. Но если скорость оказывается выше, то небольшие повороты руля, боковой ветер или наезд на выбоину могут внезапно вызвать такие раскачивающие движения, которые быстро набирают интенсивность и в конечном счете могут привести к ДТП из-за складывания автопоезда.
Периодическая избыточная поворачиваемость вызывает стандартные стабилизирующие вмешательства ESP, но они обычно приходят поздно и сами по себе не способны стабилизировать автопоезд. Функция подавления раскачивания прицепа (TSM) своевременно выявляет раскачивающие движения на основе сигналов стандартных датчиков ESP; это делается посредством анализа скорости вращения тягача вокруг вертикальной оси на основе моделей, с учетом маневрирующих движений водителя. Когда эти раскачивающие движения достигают критического уровня, автопоезд автоматически тормозится для уменьшения скорости до такой степени, чтобы даже малейшее последующее возбуждение не вызвало немедленных критических колебаний. Чтобы как можно эффективнее погасить колебания в критической ситуации, в дополнение к симметричному торможению через все оси тягача выполняются притормаживания отдельных колес, быстро устраняющие раскачивание автопоезда. Ограничение крутящего момента двигателя предотвращает опасное ускорение автомобиля (инициируемое водителем) во время стабилизации.
Наряду с использованием гидравлических колесных тормозов, предусмотрены и другие исполнительные механизмы, посредством которых можно влиять на динамику движения автомобиля. Когда активное рулевое управление и системы шасси соединяются с ESP, образуя комплексную систему- систему управления динамикой автомобиля (Vehicle Dynamics Management, VDM), они в комплексе могут даже лучше поддержать водителя, что еще больше повышает безопасность движения и динамику вождения.
В то время как сочетание системы стабилизации рулевого управления с тормозной системой появилось в последние несколько лет, системы для активации блокировки дифференциала в трансмиссии уже давно представлены на рынке. Большое количество таких систем означает, что соединение с ESP возможно во многих случаях. Дополнительный исполнительный механизм может быть активирован либо непосредственно из расширенной функции ESP (принцип взаимодействия), либо через отдельный ЭБУ, обменивающийся информацией с ЭБУ ESP (параллельный принцип).
В полноприводных автомобилях создаваемый двигателем момент распределяется между обеими осями через межосевой дифференциал (рис. «Концепция полноприводного автомобиля с ESP» ). Когда двигатель сначала приводит в действие одну ось, а другая ось соединена с двигателем через межосевой дифференциал, такая система называется зависимой. Если этот межосевой дифференциал представляет собой разомкнутый дифференциал (без блокировки), то приводной момент ограничивается при увеличении пробуксовки одной оси. В самом неблагоприятном случае при пробуксовке колеса не происходит движения вперед. В сочетании с ESP симметричные вмешательства торможением контроллера TCS на все колеса могут ограничить межосевую разность скоростей колес и тем самым добиться продольного блокирующего эффекта.
Управление тяговым усилием системы ESP может также сопоставляться с особыми принципами работы других типов межосевых дифференциалов, таких как Torsen и вязкие муфты. В принципе, все управляемые исполнительные механизмы привода должны иметь определенный блокирующий момент и динамическую реакцию при размыкании и смыкании, чтобы адаптировать к себе подруливающие свойства автомобиля.
Если привод автомобиля может быть вручную переключен в различные режимы, то ESP может автоматически подстроиться под выбранный водителем режим. Поскольку ESP базируется на индивидуальном управлении колесами, то взаимодействие с механическими блокировками дифференциала для езды по бездорожью возможно лишь при возможности автоматического размыкания блокировки дифференциала во время вмешательств контроллера поперечной динамики. В противном случае систему необходимо переключить на аварийный режим ABS, когда включена блокировка, потому что вмешательства системы динамической стабилизации на одном колесе затронут и другие колеса, если оси жестко соединены.
Наряду с простыми соединениями между двумя осями, имеются управляемые блокираторы межосевого дифференциала, в которых электрический или гидравлический исполнительный орган активирует муфту, тем самым адаптируя момент блокировки (рис. «Концепция полноприводного автомобиля с ESP» ). Таким образом, на основании информации ESP (скорости колес, скорость автомобиля, скорость вращения вокруг вертикальной оси, боковое ускорение и крутящий момент двигателя), и с учетом переменных, специфичных для исполнительного органа (таких как механическая нагрузка) можно оптимально адаптировать соотношение двух осей к текущей ситуации движения (динамический крутящий момент при межосевом распределении, DCT-C).
Пример на рис. «Влияние распределения момента привода на поведение автомобиля» показывает, как переменное распределение приводного момента влияет на поведение автомобиля. Если в случае риска избыточной поворачиваемости при прохождении поворота можно временно перебросить часть крутящего момента на переднюю ось, это необходимо делать лишь намного позже во избежание потери устойчивости, для уменьшения крутящего момента двигателя или даже стабилизации автомобиля вмешательством тормозной системы (показано максимально возможное перераспределение крутящего момента привода).
Если автомобиль имеет тенденцию к недостаточной поворачиваемости, то её можно уменьшить путем смещения крутящего момента на заднюю ось. В обоих случаях достигается улучшение реакции автомобиля и повышение устойчивости. Пределы, в которых фактически возможно смещение крутящего момента привода, зависят от конфигурации конкретного привода.
Управляемый межколесный дифференциал на одной оси может быть активирован системой ESP по аналогичным линиям к гибкому соединению двух осей. В плане принципа работы система динамического распределения крутящего момента на колеса (Dynamic Wheel Torque Distribution, DWT) отличается лишь от блокировки межколесного дифференциала, выполняемой системой TCS через гидравлические колесные тормоза.
Однако такой дополнительный исполнительный орган в обычных ситуациях также активно распределяет момент привода между колесами одной оси. Это делается с минимальными потерями и с гораздо большей чувствительностью и комфортом, чем может быть достигнуто через управление тяговым усилием в сочетании с регулированием тормозного момента и уменьшением крутящего момента двигателя, учитывая износ гидравлического блока ESP.
Гидравлический блок, непосредственно подключенный к нему ЭБУ (добавочный ЭБУ) и датчики скорости работают в сложных условиях моторного отсека и колесных арок. Датчик вращения вокруг вертикальной оси и датчик бокового ускорения либо встраиваются в ЭБУ, либо, как датчик угла поворота, устанавливаются в салоне. На рис. «Компоненты ESP» показаны примерные места установки компонентов в автомобиле с электрическими и механическими соединениями.
ЭБУ в виде печатной платы включает в себя, как и компьютер с двухъядерным процессором, все приводы и полупроводниковые реле для активации клапанов и насосов, а также интерфейсные контуры для обработки сигналов датчиков и соответствующие коммутирующие входы для дополнительных сигналов (например, выключатель стоп-сигнала). Имеются также интерфейсы (CAN, FlexRay) для сообщения с другими системами, такими как системы управления двигателем и трансмиссией.
Гидравлический блок (также называемый гидравлическим модулятором), как в системах ABS или ABS/TCS, образует гидравлическое соединение между главным тормозным цилиндром и рабочими цилиндрами колесных тормозов. Он преобразует управляющие команды ЭБУ и через электромагнитные клапаны регулирует давление в колесных тормозах. Гидравлический контур выполняется в виде каналов в алюминиевом блоке. Этот блок также используется для размещения необходимых элементов гидравлической функции (электромагнитных клапанов, плунжерных насосов и камер-аккумуляторов).
В системе ESP должно быть 12 клапанов независимо от конфигурации тормозных контуров (рис. «Схема гидравлического блока ESP (х-образная конфигурация тормозных контуров» ). Кроме того, обычно встраивается датчик давления, измеряющий инициируемое водителем замедление через тормозное давление в главном тормозном цилиндре. Это повышает эффективность стабилизации автомобиля при частично активных маневрах. Давление модулируется при регулировании со стороны ABS (пассивное регулирование) с помощью гидравлики ESP точно так же, как было описано для системы ABS.
Но поскольку системы ESP также должны активно нагнетать давление (активное регулирование) или повышать тормозное давление, создаваемое водителем (частично активное регулирование), используемый в ABS возвратный насос заменяется самовсасывающим насосом для каждого контура. Рабочие цилиндры тормозных механизмов колес и главный тормозной цилиндр соединяются через коммутационный клапан, открываемый при нулевом электрическом токе, и переключающий клапан высокого давления.
Дополнительный невозвратный клапан с определенным давлением закрытия предотвращает высасывание лишней тормозной жидкости из цилиндров колес. Насосы приводятся в действие электродвигателем постоянного тока в зависимости от потребностей. Двигатель вращает расположенный на его валу эксцентриковый подшипник.
На рис. «Модуляция давления в гидравлическом блоке ESP» показаны три примера модуляции давления. Чтобы нагнеталось давление независимо от водителя (рис. с), коммутационные клапаны закрываются, а переключающие клапаны высокого давления — открываются. Теперь самовсасывающий насос подает тормозную жидкость на соответствующее колесо или колёса, нагнетая давление. Впускные клапаны других колес остаются закрытыми.
Чтобы уменьшить давление, выпускные клапаны открываются, а переключающие клапаны высокого давления возвращаются в исходное положение (рис. b). Тормозная жидкость вытекает из рабочих тормозных цилиндров колес в резервуары низкого давления, опорожняемые насосами. Управление двигателем насоса, в зависимости от потребностей, уменьшает шум при нагнетании и регулировании давления.
Для частично активного управления (рис. а) переключающий клапан высокого давления должен быть способен открывать всасывающий канал насоса при высоком дифференциальном давлении (> 0,1 МПа). Первая ступень клапана открывается за счет магнитной силы катушки, находящейся под напряжением, а вторая ступень — за счет разности гидравлических площадей. Если контроллер ESP обнаружит нестабильное состояние автомобиля, то коммутирующие клапаны (открытые при нулевом электрическом токе) закрываются, а переключающий клапан высокого давления (закрытый при нулевом электрическом токе) открывается.
Затем два насоса генерируют дополнительное давление для стабилизации автомобиля. По завершении вмешательства системы открывается выпускной клапан, и тормозная жидкость из рабочего тормозного цилиндра регулируемого колеса выходит в аккумулятор. Как только водитель отпустит педаль тормоза, тормозная жидкость откачивается из аккумулятора обратно в бачок.
Комплексная система контроля безопасности является фундаментальной для обеспечения надежного функционирования ESP. Система контроля безопасности охватывает работу системы ESP вместе с ее компонентами и всеми другими функциональными взаимосвязями. В основе системы контроля безопасности лежат такие методы, как FMEA, FTA и исследования с моделированием неисправностей. Применяются методы по исключению ошибок, которые бы имели последствия, относящиеся к безопасности. Крупномасштабные программы контроля гарантируют надежное и точное определение всех ошибок датчиков, которые не могут быть полностью исключены. Эти программы основаны на хорошо разработанных надежных программных обеспечениях систем ABS и TCS, контролирующих все компоненты, подключенные к ЭБУ вместе с их электрическими подсоединениями. Со временем надежное программное обеспечение улучшалось более полным использованием возможностей, предоставлявшихся дополнительными датчиками и их последующим приспособлением к специальным компонентам и функциям ESP.
Работа датчиков контролируется в несколько этапов. Во время первой стадии датчики непрерывно контролируются во время управления автомобилем на обрыв проводов и вероятность прохождения сигнала (внедиапазонная проверка, определение помех, физическое правдоподобие). В течение второго этапа наиболее важные датчики проверяются отдельно. Датчик скорости вращения вокруг вертикальной оси испытывается путем преднамеренной расстройки чувствительного элемента и затем оценивается на прохождение сигнала. Даже датчик ускорения имеет внутренний фоновый контроль. При активации сигнал датчика давления должен показывать предопределенную характеристику; происходит внутренняя компенсация смещения и усиления. Датчик угла поворота рулевого колеса имеет свои собственные контрольные функции, которые непосредственно сопровождают какое-либо ошибочное сообщение, поступающее к ЭБУ. Дополнительно контролирует цифровой сигнал, постоянно передаваемый к ECU. Во время третьего этапа применяется аналитическая избыточность для контроля работы датчиков во время стационарного режима эксплуатации автомобиля. В данном случае используется модель автомобиля с целью проверить тот факт, что не имеется нарушений для определенных связей между сигналами датчиков и движением автомобиля. Эти модели также часто применяются для вычислений и компенсирования смещений датчиков, поскольку они остаются в пределах технических условий.
В случае возникновения ошибки система выключается или частично, или полностью, что зависит от типа ошибки. Реагирование системы на ошибки также зависит от того, действительно ли осуществлялось управление.
В следующей статье я расскажу о кузове автомобиля.
19 февраля 2015 года
Прошло всего пара десятков лет с момента появления первой системы электронной стабилизации, а на рынке уже хорошо себя зарекомендовала ESP девятого поколения.
Для начала давайте вернемся в далекий 1978 год. Тогда впервые на автомобиле стали серийно устанавливать систему ABS (антиблокировочную систему), не позволявшую колесу во время торможения полностью блокироваться. Тем самым водитель получал возможность контролировать траекторию движения. Трудно оценить всю важность и необходимость этой системы, но тот, кто хоть раз в жизни, тормозя «в пол», пересекал четыре полосы по диагонали, не имея возможности корректировать направление движения, пользу ABS осознает в полной мере.
Прошло еще 8 лет, и на машины стали устанавливать систему TCS (Traction Control System) — противобуксовочную тормозную систему. Она предотвращает пробуксовку колес при старте. Эти системы, ABS и TCS, используют одни и те же датчики и исполнительные механизмы, разница лишь в программном обеспечении. И наконец, в 1995 году появляется первая программа стабилизации ESP. Электроника стала контролировать не только блокировку и пробуксовку колес, но и поворот автомобиля вокруг вертикальной оси — инженеры смогли обуздать занос автомобиля. Причем если первая ESP состояла из 11 элементов, то в современной системе стабилизации их всего четыре.
Основная задача этой системы — автомобиль должен ехать туда, куда повернут руль, при этом занос и рысканье исключаются. Работает она так: водитель с помощью руля задает траекторию движения, датчик угла поворота передает данные в блок управления, наряду с ними туда поступает информация от датчиков ABS, ускорения и углового вращения кузова. Два последних сейчас объединены в один корпус и размещаются непосредственно на гидроблоке. Это проще, дешевле и надежнее.
Как только данные с одного или нескольких датчиков превысят критические значения, записанные в базе данных блока управления, программа согласно заданному алгоритму действий начнет выправлять траекторию автомобиля. Сейчас это можно сделать только короткими тормозными импульсами, затормаживая то колесо, вокруг которого автомобиль должен повернуться и изменить траекторию своего движения. Если этого недостаточно и скорость входа в поворот велика, система может чуть «придушить» двигатель, тем самым уменьшая тягу на колесах. Многим активным «драйверам» такое не понравится, но для обычного водителя это хорошее подспорье. Начиная с середины 2014 года все новые автомобили, выпускающиеся в Европе, должны иметь в базовой комплектации ESP. У нас пока все не так строго: новые автомобили, которые впервые получают омологацию, должны быть оборудованы этой системой, а если на них лишь продлевают сертификат, ее наличие необязательно. Надо учитывать, что если вам необходимы различные помощники, такие как система помощи при троганье в гору, имитация блокировки дифференциала, ассистент парковки и т.д., то без электронной стабилизации не обойтись. Тем, кто не хочет ездить с «электронным ошейником», можно посоветовать выбрать старую добрую классику (до 1995 года), но найти такой автомобиль в хорошем состоянии нынче весьма проблематично. Еще лучше купить новый, но с отключаемой системой ESP. В качестве примера можно привести модель MiTo компании Alfa Romeo. В зависимости от настроения и условий движения можно выбрать одну из трех базовых настроек. Dynamic — самая агрессивная, система безопасности срабатывает в последний момент, позволяя получить полное наслаждение от вождения. Режим All Weather заточен на безопасность, все электронные помощники срабатывают быстро и по максимуму. Natural — промежуточная настройка, предназначенная для повседневной езды.По сути требуется создать систему, которая будет анализировать окружающую обстановку и выдавать правильное решение. Первый шаг уже сделан: активный круиз-контроль использует радиолокационные и видеодатчики для отслеживания дорожной ситуации впереди автомобиля.
Автомобиль в ближайшее время станет намного безопаснее, у него, как и у современных самолетов, появятся различные дублирующие друг друга системы. Это, в первую очередь, необходимо для того, чтобы внезапный выход из строя одной из систем не привел к аварии.
Специалисты Bosch уже разработали технологию резервной тормозной системы. Электромеханический усилитель тормозов iBooster и ESP (электронная система курсовой устойчивости) позволяют остановить автомобиль независимо друг от друга.
Сейчас точность позиционирования современных систем навигации лежит в пределах одного метра. Для безопасного автопилота точность надо поднять как минимум раз в десять. Кроме этого актуализация карт должна происходить чаще. Наша привычка установить новые знаки на время ремонта дороги, а потом забыть их убрать может свести с ума кибернетический мозг автомобиля. Например, когда видеокамера зафиксирует «кирпич», а навигация определит дорогу как одностороннюю. Куда тогда двигаться? Ведь запрет нарушать правила дорожного движения будет основным у искусственного интеллекта.
Мы перечислили только три проблемы, в то время как на пути к созданию автопилота их десятки! И все-таки есть надежда, что лет через десять мы сможем выехать рано утром на дачу на «умном» автомобиле, а по дороге спокойно поспать еще в кресле водителя.Система ESP: куда мы катимсяСистема ESP: куда мы катимсяОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter28 июля 2010 года
Систему динамической стабилизации мы называем ESP. Ведь “Электроник стабилити программ” — зарегистрированная торговая марка фирмы “Бош”, чьи инженеры запатентовали ее еще в 1959 году. Кстати, именно поэтому собственные разработки подобных технологий автомобильным фирмам приходится называть другими именами. Система включает датчики в колесах, тормозах, рулевом управлении, так называемый G-сенсор, отслеживающий угол поворота автомобиля вокруг вертикальной оси, а также датчики боковых ускорений.
Все это электронное воинство по 25 раз в секунду снимает показания и передает их в блок управления. И если, сопоставляя полученную информацию, “в центре” вдруг понимают, что реальное движение автомобиля никак не соответствует положению рулевого колеса и желанию водителя, меры принимаются незамедлительно. Блок управления отдает команду исполнительным модулям в тормозах и в двигателе, чтобы те замедлили вращение того или иного колеса или колес, а также уменьшили подачу топлива в камеру сгорания. Более того, некоторые системы стабилизации на машинах с АКП умеют даже переключаться на пониженную. От водителя требуется только работа рулем.
Поскольку единственное, что ESP сделать не в состоянии — это выбрать за водителя верную траекторию движения. Конечно, система динамической стабилизации не панацея. Тем не менее она исправляет большинство водительских ошибок, в разы сокращая шансы попасть в аварию. Неудивительно, что согласно статистике больше жизней на дороге, чем ESP, спасли лишь ремни безопасности.
МЫ РЕШИЛИ:
Цена — единственный минус системы динамической стабилизации. Увы, далеко не на всех автомобилях она включена в список стандартного оборудования, а в качестве опции дороговата — от 13 до 25 тысяч. И все же лучше отказаться от “музыки”, металлика и даже обогрева сидений, чем экономить на ESP. Ведь в большинстве сложных ситуаций она реально помогает водителю оперативно скорректировать движение автомобиля и избежать ДТП. Вот почему система динамической стабилизации — не роскошь, а необходимость.
ЛОСИНАЯ ИСТОРИЯ
Массовому распространению ESP мы во многом обязаны Роберту Коллину. В 1998-м во время тест-драйва “Мерседес-Бенца” А-класса этот шведский журналист умудрился перевернуться при выполнении переставки на скорости всего 37 км/ч! В пожарном порядке исправляя конструктивные недочеты “ашки”, немецкие инженеры включили в базовое оснащение модели разработанную фирмой “Бош” систему динамической стабилизации. Кстати, первым серийным автомобилем, на котором появилась ESP, также был “Мерседес-Бенц”. За три года до скандального “лосиного теста” электронный ангел-хранитель дебютировал на S-классе модели W140.
Как работает система стабилизации?Как работает система стабилизации?Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + EnterДоступно о системе динамической стабилизации автомобиля, ее достоинствах и недостатках
В производстве современных автомобилей все больше внимания уделяется системам активной безопасности движения. Антиблокировочная система тормозов, разнообразные системы парковки, круиз–контроль, камеры ночного виденья и т. д. Но вот эту систему можно по праву назвать функцией, позволяющей избегать ДТП. Речь идет о системе курсовой устойчивости автомобиля
В кругах экспертов эти системы называют по разному ESC (Электронная система стабилизации) или DSC (динамическая система стабилизации), но именно ее считают самым важным изобретением в сфере автомобильной безопасности после ремней безопасности. Она обеспечивает водителю наилучший контроль за поведением автомобиля.
Электронная система стабилизации срабатывает в опасных ситуациях, когда возможна или уже произошла потеря управляемости автомобилем.
Определение потери управляемости происходит путем сравнения блоком управления действий водителя и реальных параметров движения автомобиля. В случае, когда желаемые параметры существенно отличаются от фактических, система динамической стабилизации распознает ситуацию как неконтролируемую и тут же включается в работу. Время ее срабатывания не превышает 20 миллисекунд. Работает ESP на любых скоростях и при любых режимах движения (разгон, торможение, движение по прямой, прохождение поворотов, а также при свободном качении).
Стабилизация движения транспортного средства может достигаться следующими способами:
притормаживание определенных колес;
снижение оборотов двигателя;
закрытие дроссельной заслонки;
пропуск впрыска топливо- воздушной смеси;
пропуск зажигания;
изменение угла опережение зажигания;
отмена переключения передачи в АКПП;
перераспределение крутящего момента между осями на полноприводных автомобилях.
изменение угла поворота передних ведущих колес (при наличии системы активного рулевого управления);
изменение жесткости амортизаторов (при наличии адаптивной подвески).
Если описать работу системы простым языком, то получится примерно так: система анализирует положение всех колес автомобиля и в зависимости от ситуации, может управлять каждым из них независимо друг от друга, по необходимости притормаживая то или иное, чтобы стабилизировать положение. Система работает, основываясь на сотни и тысячи алгоритмов, заложенных в нее техническим прогрессом.
В зависимости от производителя система курсовой устойчивости может иметь различные торговые наименования:
ESP (Electronic Stability Program) на Audi, Citroen, Fiat, Mercedes-Benz, Opel, Peugeot, Renault, Volkswagen и другие;
ESC (Electronic Stability Control) на Kia, Hyundai;
DSC (Dynamic Stability Control) на BMW, Land Rover, Mazda, Mini;
DTSC (Dynamic Stability Traction Control) на Volvo;
VSA (Vehicle Stability Assist) на Acura, Honda;
VSC (Vehicle Stability Control) на Lexus, Toyota;
VDC (Vehicle Dynamic Control) на Infiniti, Nissan, Subaru.
Система курсовой устойчивости во многом объединяется с антиблокировочной системой и имеет следующее устройство:
входные датчики;
датчик угла поворота руля;
датчик давления в тормозной системе;
датчик угловой скорости колес;
датчики продольного и поперечного ускорения;
датчик скорости поворота.
блок управления;
гидравлический блок.
Следует помнить, что ESP не отменяет законов физики и не дает стопроцентную гарантию безопасности движения. Если дорога очень скользкая, то эффективность системы резко падает. Поэтому даже при небольших превышениях скорости на автодороге с маленьким коэффициентом сцепления возможность вылета с трассы увеличивается в разы. Помимо этого, если автомобиль сорвался в глубокий занос, стабилизировать его с работающей ESP намного сложнее, чем с выключенной.
Когда же стоит применять систему динамической стабилизации? Каждый сам для себя решает как удобнее и безопаснее ездить. Можно только посоветовать отключать эту систему в следующих ситуациях:
При езде с небольшой скоростью по сыпучему грунту или размытой дождем грунтовке. При установленных на колеса цепях.
Если машина застряла в снегу или грязи.
При движении по 15-20 см снега, для предотвращения раннего срабатывания антипробуксовочной системы.
Отключение системы помогает проходить сложные, труднопроходимые и скользкие участки. При обычном режиме движения всегда включайте ESP.
Многие водители утверждают, что система курсовой устойчивости не нужна. Но проведенные исследования показывают, что одну треть аварий со смертельным исходом можно было бы избежать, если бы все автомобили были оснащены ESP. Эта система на сегодняшний день является самой эффективной системой безопасности, поэтому она нужна не только начинающим автолюбителям, но и профессионалам.
Но, несмотря на все плюсы ESP, в редких случаях она может привести к непредвиденным последствиям и даже авариям. Например, на неровной грунтовке в случае отрыва колеса от дороги, или при движении по льду, когда машину уже начало нести. В таких ситуациях стабилизировать движение гораздо тяжелее, поэтому необходимо заранее отключать систему.
Можно привести случай из жизни:
Водителю нужно было развернуться. По встречной полосе шел интенсивный поток. Заметив небольшой интервал между встречными машинами, автолюбитель нажал газ. Зад слегка повело. И тут вмешалась ESP и «придушила» двигатель. Хорошо, что водители на встречной полосе успели притормозить и тем самым избежать аварии.
Весьма опасно полагаться на электронные системы при агрессивном вождении. Причем самое печальное, что не только для «гонщика», но и для окружающих занос автомобиля на скользкой дороге опасен сам по себе, а когда он происходит при превышении оптимальной скорости, он становится смертельно опасным. А системы курсовой устойчивости, пытаясь исправить ситуацию, лишь ухудшают положение.
Нужна ли вам такая система безопасности или нет, решать вам. Но очень многих аварий удалось избежать благодаря этому полезному автомобильному гаджету.