Отдел продаж
8 (499) 755-89-57
Лодки, запчасти
8 (499) 755-89-57

Пра что это


Что такое ПРА и для чего он нужен?

Пускорегулирующий аппарат - светотехническое изделие, с помощью которого осуществляется питание разрядной лампы, от электрической сети, обеспечивающее необходимые режимы зажигания, разгорания и работы лампы и конструктивно оформленное в виде единого аппарата или нескольких отдельных блоков.

Пускорегулирующий аппарат обеспечивает:

1) зажигание разрядной лампы, т. е. пробой межэлектродного промежутка и формирование в нем требуемого вида разряда. Указанная функция обычно выполняется зажигающим устройством, которое часто является составным элементом ПРА. Для надежного зажигания лампы ПРА должен иметь определенные выходные параметры в режиме холостого хода, т. е. в режиме работы схемы включения при не горящей лампе. К ним относятся форма, значение напряжения, подаваемого на электроды лампы в период её пуска, а при необходимости значение тока предварительного подогрева электродов и др. 2) разгорание разрядной лампы, т. е. процесс установления рабочих параметров лампы после ее зажигания. Продолжительность разгорания лампы, а также характер изменения тока в ней в течение этого процесса зависят не только от газового наполнения лампы и соотношения температур ее колбы в холодном и рабочем состоянии, но и от типа и параметров ПРА. 3) устойчивость режима работы разрядной лампы в контуре, заключающуюся в способности контура автоматически восстанавливать исходное значение тока при его флюктуационных изменениях. Наличие данной функции у ПРА, которая выполняется с помощью токоограничивающих элементов (стабилизаторов тока), связано со спецификой статических вольт - амперных характеристик ламп (ВАХ). Обеспечить устойчивый режим работы от источника напряжения без токоограничивающих элементов-балластов принципиально невозможно для разрядных ламп, имеющих падающие ВАХ. Для ламп с возрастающими ВАХ устойчивая работа от сети возможна и без балласта. Наибольшее распространение в цепях переменного тока нашёл индуктивный балласт – дроссель. Дроссель в общем случае представляет собой обмотку, намотанную на сердечник из ферромагнитного материала – листовой электротехнической стали.

Электрический конденсатор обладает электрической ёмкостью, то есть способностью накапливать (заряжаться) и хранить электрический заряд. Конденсаторы постоянной ёмкости состоят из двух или нескольких пластин, называемых обкладками, отделённых друг от друга изоляционным материалом – диэлектриком. Пластины – обкладки конденсатора могут быть металлическими (из фольги) или иметь металлизированные покрытия, а диэлектриком могут служить воздух, слюда, лак, бумага. Чем больше площадь пластин конденсатора и меньше расстояние между ними, тем больше ёмкость конденсатора, тем больше электрических зарядов он накапливает.

Катушка индуктивности – катушка из провода с изолированными витками. Обладает значительной индуктивностью при относительно малой электрической ёмкости и малом активном сопротивлении. Один из основных элементов электрических фильтров, колебательных контуров, электрических источников электрического тока и д.р.

Резистор – устройство на основе проводника с нормированным постоянным или регулируемым активным сопротивлением, используемое в электрических цепях для обеспечения требуемого распределения токов и напряжений между участками цепи.

Трансформатор – устройство для преобразования переменного напряжения по величине. Состоит из одной первичной обмотки и одной или нескольких вторичных и ферромагнитного сердечника (магнитопровода). Основные типы трансформаторов: силовые (повышающие или понижающие сетевое напряжение), используемые в электрических сетях, радиотехнических устройствах, системах автоматики и д.р.; измерительные, предназначенные главным образом для определения больших напряжений и токов.

www.prof-svet.ru

ПРА - это... Что такое ПРА?

ПРА, предл. слитный, б.ч. с сущ., означающий родство или связь в дальнем восходящем или нисходящем порядке, предков или потомков, а иногда простое предшествованье чему по времени, или исконный, начальный, и пр. Праотцы наши; правнуки нынешнего поколенья; празаконник Моисей; праобычай славян. Вероятно, пра в сродстве с предки, пред, а в немногих словах заменяет про (празелень, прасол), или по зап. говору на а; в разных славянских наречьях предлоги пра, пре, при, Про, заменяются один другим; см. Шимкевич.

| Пра, право, см. правда. Прабаба, прабабка, прабабушка, мать деда или бабки; прадед, прадедушка, отец деда или бабки;

| мн. прадеды, прабабки, предки. Прадеды наши так живали, и нам так жить наказали. Прабабки наши не светом, а семьей да домом жили. Прабабкин, -бушкин, прадедов, прадедушкин, им лично принадлежащий. Прабабний, прабабничий, прадедный, прадедовский, прадедовный, к ним относящийся. Прабабная клятва, грехопадение. Прадедовские обычаи. Прабабина, падедина жен., собир. наследье, имущество, доставшееся от прародителей. А вашему великому княженью с нашею прадединою, и деданою, и отчиною суд по старине. Прадедовщина жен., собир. быт и все вообще, что относится до прадедов или предков, предковщина. Павнук, правнучек муж. правнука, правнучка жен. сын либо дочь внука, либо внучки. Правну(ч)ков, ему, правну(ч)кин, ей принадлежащий. Правнучий, принадлежащий правнучатам, детям внука или внуки; к ним относящийся. Прародители, то есть: праотец, прародитель муж. и праматерь, прародительница жен. первая, по родословной известная, чета, от коей вышел род, поколенье, дом, колено.

| Адам и Ева, как общие прародители рода человеческого. Прародители русских славяне. Праматерь уральских казаков, бабушка Гугнаха, по преданию, первая женщина, допущенная в казачий быт. Неделя праотцев, воскресенье перед Рождеством Христовым. Праотцев, праматерин, прародителев, прародительницын, лично им принадлежащ; праотеческий, праотцовский, праотчий, праотний, праматерний, праматеринский; прародительский, к ним относящийся. Праотчее падение. Праотчее достояние. Праотеческое гостеприимство. Прародительское завещанье, или церк. прародительное. Прападалица, рожь падалица, самосейка, самотечка, давшая еще второй урожай, на другой год. Прапрадед муж. прапрабабка жен. прапрадателт отец и мать прадеда и прабабки. Прапрадедов, прапраабкин, им лично прнадлежш. Прапрадедовский, относящийся к ним. Пращур муж. пращурка жен. пращуры, вообще родители прапрадеда или прапрабабки. Пращуров, пращуркин, им принадлежащий; пращурский, к ним относящийся

| Пращур, ученое названье птицы жарких стран Epimachus, близкой к удоду. Прапращур, -рка, прапращуры, родители пращура; говорят иногда и прапрапращур. Праправкук, праправну(ч)ка, сын и дочь правнука или правнуки. Правладелец, -лица, первый, древнейший владелец чего. Пражителп страны, исконные, начальные, коренные. Празаконник, первый законодатель страны. Празаконник Руси, Ярослав. Праобычаи, обычаи праотцев. Праотечество, родина праотцев. Праотечество иудеев утрачено ими. Прамир муж. допотопный, первозданный мир, исконный.

Толковый словарь Даля. В.И. Даль. 1863-1866.

dic.academic.ru

Пускорегулирующая аппаратура, ПРА, ЭПРА, ЭМПРА

Для ограничения тока многим лампам необходимы пускоре­гулирующие аппараты.Для этого используются различные виды ПРА.

Пускорегулирующая аппаратура (ПРА) - это специальное изделие, с помощью которого осуществляется запуск и поддержание работы источника света.Конструктивно ПРА может быть выполнено в виде единого блока или нескольких отдельных.

По типу источника света ПРА делятся:- ПРА для газоразрядных, люминесцентных ламп

- ПРА для галогенных ламп (трансформаторы) - ПРА для светодиодов (LED драйверы)

По типу устройства и функционирования ПРА бывают:- электромагнитные (ЭмПРА):

 - электронные (ЭПРА):

 

Качественно важным показателем для ПРА является мощность потерь,которая вместе с мощностью ламп складывается в системную мощность.

Электронные пускорегулирующие аппараты (ЭПРА), в отличие от электромаг­нитных, работают в частотном диапазоне свыше 30 кГц, что приводит к значи­тельному увеличению эффективности. Она базируется в основном на двух меха­низмах: уменьшении электродных потерь и повышении световой отдачи.

Применение современных ЭПРА позволяет значительно улучшить: свето­вой комфорт, экономичность и эксплуатационную безопасность.

Факторы, повышающие световой комфорт:

  • зажигание без мигания;
  • приятный, немерцающий свет без стробоскопического эффекта;
  • отсутствие мешающих шумов;
  • отсутствие миганий у перегоревших ламп;
  • автоматическое включение после замены лампы.

Экономичность работы:

  • на треть уменьшенная потребляемая мощность по сравнению с ЭМПРА;
  • вдвое по сравнению с ЭППРА и энергосберегающими ПРА увеличенный срок службы за счет бережливого режима работы;
  • пониженные расходы на техническое обслуживание;
  • пониженные расходы на кондиционирование, пониженная нагрузка на системы кондиционирования.

Свойства, повышающие эксплуатационную безопасность:

  • предохранительное отключение питания при неисправной лампе;
  • соответствие требованиям европейских стандартов к безопасности и элект­ромагнитной совместимости;
  • схема защитного отключения в случае кратковременного броска напряже­ния и при периодически появляющемся перенапряжении.

От технических характеристик пускорегулирующей аппаратуры во многом зависит стабильность и срок работы источников света.

Возможно, Вам будет интересно:

Cos фи или коэффициент реактивной мощности – что это?

Энергосберегающие лампы: плюсы и минусы

Лампы люминесцентные, световой поток

Пульсация ламп

7207971.ru

Все о ПРА - электромагнитном пускорегулирующем аппарате

1. Общее описание электромагнитных ПРА :

Электромагнитныe ПРА для трубчатых люминесцентных и компактных люминесцентных ламп внутреннего применения. Иногда их называют: дроссель для ламп дневного света. Класс защиты от поражения электрическим током — I, степень защиты от воздействия от окружающей среды — IP 20. Применяется для двухламповых светильников. Простой монтаж и подключение.

Область применения:

  • магазины,
  • офисные центры,
  • гостиницы,
  • промышленные помещения.

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель), подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами электромагнитного дросселя для ламп дневного света является его простота и дешевизна. Недостатки электромагнитного балласта — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск пра (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Электромагнитный дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания. 

2. Регламентирующие нормативные документы для электромагнитных ПРА

  • DIN VDE 0100 Предписание по устройству силовых электроустановок с номинальным напряжением ДО 1000 В
  • EN 60598-1 Осветительные приборы — часть 1: Общие требования и испытания
  • EN 61347-1 Устройства управления для ламп — часть 1: Общие требования и требования безопасности
  • ЕN 61 347-2-8 Устройства управления для ламп — часть 2-8: Особые требования к электромагнитным ПРА для люминесцентных ламп.
  • ЕN 60921 ПРА для трубчатых люминесцентных ламп. Требования к рабочим характеристикам.
  • ЕN 50294 Методы измерения общей потребляемой мощности соединения ПРА - лампа.
  • ЕN 61000-3-2 Электромагнитная совместимость. Предельно допустимые токи высших гармоник в питающей сети.
  • ЕN 61547 Осветительные приборы и системы общего назначения. — Требования к электромагнитной совместимости и устойчивости к электромагнитным помехам.

З. Общие данные ПРА

Электромагнитные (индуктивные) ПРА являются активными компонентами, которые совместно со стартерами нагревают электроды ламп, обеспечивают напряжение зажигания и стабилизируют ток лампы в течение ее работы. Для компенсации реактивного тока необходимы конденсаторы последовательного или параллельного соединения. 

При установке в светильники нужно обращать внимание на напряжение и частоту сети, габаритные размеры и температурные пределы, а также возможное генерирование шумов.

Электромагнитные ПРА оптимизированы в отношении к их магнитным полям и магнитным нагрузкам так, чтобы они обычно не ощущались. Поскольку магнитные колебания могут воздействовать в зависимости от конструкции светильников на другие области, то нужно учитывать при проектировании светильников.

Необходимо сделать конструкцию жесткой, чтобы вибрации не распространялись.

Срок службы индуктивного ПРА определяется выбором материала и изоляцией обмотки.

Предельная температура обмотки обозначает ту величину температуры (tw), которую выдерживает изоляция при непрерывной работе при номинальных условиях в течение 10 лет. Эта предельная температура обмотки не должна быть превышена в светильнике в реальных условиях, тогда можно достигнуть работы ПРА на весь срок службы. Установленная в светильнике температура обмотки электромагнитного балласта состоит из температуры окружающей среды, температурных условий в светильнике и потери мощности дросселя. Мерой потери мощности ПРА является Δt, значение которой находится на маркировке балласта. В дополнение к этому, потеря мощности схемы соединения дросселя и люминесцентной лампы измеряется по норме ЕN 50294. Этот метод измерений является основой классификации энергопотребления ПРА.

Кроме этого, применяется европейская директива 2000/55/ЕС «Предельные допустимые величины потребления мощности схемами люминесцентных ламп».

При включении электромагнитного балласта возникают кратковременные высокие импульсы тока из-за паразитарных нагрузок, которые суммируются в зависимости от количества светильников в осветительной установке. Эти высокие токи при включении системы нагружают автоматы защиты электропроводки, поэтому необходимо использовать соответствующим образом подобранные автоматические выключатели.

Индуктивные ПРА конструктивно вызывают токи утечки, которые отводятся заземлением светильника (устройство заземления). Максимально допустимая величина тока утечки у светильников класса защиты I составляет 1 мА.

4. Электромагнитная совместимость (ЭМС/ ЕМV)

Помехи:

Измерение напряжения помех должно проводиться у светильников с электромагнитными ПРА на

контактных зажимах, поскольку частота напряжения ламп этих систем ниже 100 Гц. Это низкочастотное напряжения помех, как правило, не критично у электромагнитных дросселей, если конструкция ПРА согласована в этом отношении.

Невосприимчивость к помехам:

Благодаря жесткой конструкции и специально отобранным материалам, электромагнитные ПРА обеспечивают высокую степень защиты от помех и не подвержены отрицательному влиянию присутствующих помех в сети.

Гармоники сети:

Люминесцентные лампы имеют пик перезажигания после каждого N-прохода тока ламп, лампы

гаснут на короткое время (почти незаметно глазом). За счет этих пиков перезажигания люминесцентных ламп создаются гармоники сети, которые сглаживаются с помощью импеданса ПРА. С помощью правильной конструкции, то есть выбора рабочей точки магнитного ПРА, ограничиваются гармоники сети на предельные значения нормы Е N 6100-3-2

5. Схемы соединения люминесцентных ламп с электромагнитными пускорегулирующими аппаратами (ПРА)

6. Температурный режим ПРА

Предельные значения температур:

При нормальной работе температура обмотки tw не должна превышать 130º С. При аномальном режиме работы предельное значение температуры обмотки tw =232º С: Эти значения должны быть проверены методом «изменения сопротивления» в течение работы.

Повышение температур:

Ток лампы, который протекает через ПРА, обуславливает потерю мощности, что приводит к повышению температуры обмотки. Критерием для этого повышения является значение Δt как для нормальной так и для аномальной работы. Значение Δt определяется по стандартной схеме измерений и указывается на маркировке в градусах Кельвина.

Пример: Δt =55К/140К

Первое значение Δt указывает на превышение температуры для нормального режима при рабочем токе лампы. Второе значение (здесь 140К) означает превышение температуры обмотки, что является результатом протекания тока, когда разрядный промежуток лампы короткозамкнут. Ток, который течет в этом режиме, является током нагрева для электродов лампы.

7. Срок службы электромагнитного балласта

При условии, что температура обмотки будет соответствовать указанному предельному значению, можно рассчитывать на срок службы 10 лет. Интенсивность отказов < О,О2% / 1.000 час. 

8. Коэффициент мощности ПРА 

Индуктивные ПРА: λ ≤ 0,5. Параллельно компенсированные дроссели для ламп дневного света:

λ ≤ 0,9 

9. Рекомендации по монтажу электромагнитных дросселей

  • Положение встраивания: Любое
  • Место монтажа: электромагнитные ПРА спроектированы для установки в светильниках или в подобных приборах.
  • Независимые ПРА не нужно встраивать в корпус.
  • Крепление дросселей: Предпочтительно с помощью винтов М4

10. Электрический монтаж электромагнитного ПРА

Клеммные колодки (универсальные контактные зажимы)

  • Применять медный провод (негибкий провод)
  • Поперечные сечения для соединения безвинтового зажима 0,5—1,0 мм²
  • Длина зачищенного конца проводника 8 мм
  • Поперечное сечение соединительного надреза (IDС - зона) 0,5 мм² , с изоляцией максимум Ø2 мм, снятие изоляции не обязательно, монтаж возможен только со специальным инструментом.

Безвинтовые контактные зажимы

  • Встроенные контактные зажимы могут присоединять только жесткие проводники. Жесткие проводники:
  • 0,5—1,0 мм². Длина зачищенного конца проводника 8 мм.
  • Соединение проводников
  • Соединение между сетью, дросселем и люминесцентными лампами должно производиться согласно представленным схемам соединения. 

www.promgidroponica.ru

пра - это... Что такое пра?

  • пра́йм-та́йм — прайм тайм, а …   Русское словесное ударение

  • пра́йс-ли́ст — прайс лист, а …   Русское словесное ударение

  • пра́на — прана …   Русское словесное ударение

  • Пра- — префикс Словообразовательная единица, образующая 1) имена существительные со значением первоначальности, исконности по отношению к тому, что названо мотивирующим именем существительным (пранарод, прародина, праславяне, праязык и т.п.) 2) имена… …   Современный толковый словарь русского языка Ефремовой

  • ПРА — ПРА, предл. слитный, б.ч. с сущ., означающий родство или связь в дальнем восходящем или нисходящем порядке, предков или потомков, а иногда простое предшествованье чему по времени, или исконный, начальный, и пр. Праотцы наши; правнуки нынешнего… …   Толковый словарь Даля

  • ПРА — пускорегулирующий аппарат; пускорегулирующая аппаратура ПРА паспортно регистрационное агентство ПРА Партия Рамкавар Азатакан партия «Рамкавар Азатакан» (Либерально демократическая партия) ср.: ПРАА Армения, полит. Источник:… …   Словарь сокращений и аббревиатур

  • Пра — Пра: Пра (приток Оки)  река в Московской и Рязанской областях. Пра (река, впадает в Гвинейский залив)  река в Западной Африке. ПРА  устройство для запуска люминесцентных ламп …   Википедия

  • Пра — река в центре Европейской части России, левый приток Оки. 167 км. В низовьях Пры  Окский заповедник. * * * ПРА ПРА, река в центре Европейской части России, левый приток Оки. 167 км. В низовьях Пры Окский заповедник …   Энциклопедический словарь

  • пра — пра. Приставка в именах сущ. и прил., обозначающая: 1) последовательное движение в древность, к предкам по прямым степеням родства, начиная с деда, бабки, напр. прадед (отец деда, бабушки), прабабушка (мать деда, бабушки) и т. п., или к потомкам …   Толковый словарь Ушакова

  • пра… — Приставка в именах сущ. и прил., обозначающая: 1) последовательное движение в древность, к предкам по прямым степеням родства, начиная с деда, бабки, напр. прадед (отец деда, бабушки), прабабушка (мать деда, бабушки) и т.п., или к потомкам,… …   Толковый словарь Ушакова

  • пра... — пра... ПРА..., прист. Образует: 1) существительные со знач. отдалённой степени прямого родства, напр. прародители, праотец, праматерь, прабабушка, правнук, праправнук; 2) существительные и прилагательные со знач. первоначальности, древности… …   Толковый словарь Ожегова

dic.academic.ru

ПРА - второе сердце светильника

ПРА - второе сердце светильника

Как известно, «сердцем» светильника является источник света или просто лампа. Все широко применяемые в настоящее время источники света делятся на два класса: тепловые и газоразрядные. В тепловых источниках свет создаётся за счёт нагрева тела накала (спирали из тугоплавкого металла – вольфрама) протекающим через него током. В газоразрядных источниках свет создаётся электрическим разрядом между двумя электродами. Тепловые источники света – это знакомые всем лампы накаливания. Они включаются в сеть непосредственно, то есть не требуют для своей работы каких-либо специальных устройств (лампа просто ввинчивается или вставляется в патрон, к которому подсоединены провода электрической сети). В отличие от тепловых, газоразрядные источники света не могут включаться в сеть непосредственно, а требуют для своей нормальной работы включения только со специальной аппаратурой, обеспечивающей их зажигание и горение. Это связано с физикой газового разряда. Если у подавляющего большинства приёмников электрической энергии при увеличении подаваемого на них напряжения увеличивается и протекающий через них ток, то все газоразрядные источники света имеют так называемую «падающую» вольтамперную характеристику. Это означает, что с ростом тока через такой источник напряжение на нём не растёт, а уменьшается. За счёт этого ток разряда, если его не ограничивать, будет лавинообразно расти до тех пор, пока не выйдет из строя одно из трёх звеньев любой электрической цепи: источник энергии, приёмник или провода, соединяющие источник и приёмник энергии. Кроме того, для возникновения разряда (зажигания) требуется напряжение, в несколько раз превышающее напряжение поддержания разряда (горения). Эти две особенности физики газового разряда делают возможным включение газоразрядных источников света только совместно с такими устройствами, которые, с одной стороны, обеспечивают подачу напряжения, достаточного для возникновения разряда (т.е. для зажигания лампы), и, с другой стороны, ограничивают ток разряда на уровне, требуемом для нормальной работы лампы. Такие устройства в русскоязычной технической литературе получили название «пускорегулирующие аппараты» (ПРА). Так как работа газоразрядных источников света без таких устройств невозможна, мы решили назвать ПРА «вторым сердцем светильника».

В принципе название «пускорегулирующий аппарат» некорректно, так как такие устройства не регулируют, а только ограничивают ток лампы. Однако не будем ломать копья по этому поводу и далее будем пользоваться общепринятой аббревиатурой «ПРА».

Что же такое ПРА?

Как ясно из сказанного, ПРА должны обеспечивать зажигание ламп и ограничивать ток через них на требуемом уровне. Очевидно, что для ограничения тока достаточно последовательно с лампой включить какую-то другую нагрузку, падение напряжения на которой при нормальной работе (при «номинальном токе») лампы в сумме с напряжением на лампе будет равно напряжению питающей электрической сети. Поскольку мощность в такой дополнительной нагрузке расходуется впустую, эта нагрузка является балластом, то есть бесполезным потребителем. Поэтому одно из требований к такой нагрузке – снизить до предела потребляемую ей «балластную» мощность. При работе ламп от сетей переменного тока балластная нагрузка может быть активной, индуктивной или ёмкостной; в сетях постоянного тока нагрузка может быть только активной. Теоретически в индуктивной или ёмкостной нагрузке потери мощности отсутствуют, поэтому на практике применяются только такие виды балластов. Из-за особенностей электрического разряда, далеко выходящих за рамки настоящего обзора, ёмкостные балласты неприменимы при работе ламп на частотах ниже 1000 Гц, поэтому реально используются только индуктивные или (гораздо реже) индуктивно-ёмкостные балласты. На практике индуктивный балласт – это катушка, намотанная изолированным проводом на сердечнике из материала с высокой магнитной проницаемостью (например, из электротехнической стали). Такая катушка называется дросселем. Хотя теоретически в дросселях не должно быть потерь мощности, практически достичь этого не удаётся, и потери в них составляют от 10 до 100% от мощности работающих с ними ламп. Если задача ограничения тока через газоразрядную лампу решается для всех типов ламп простым включением её последовательно с балластной нагрузкой, то проблема зажигания ламп является более сложной и решается по разному для разных типов ламп. В газоразрядных лампах низкого давления, к которым относятся все люминесцентные лампы, напряжение зажигания превышает напряжение горения в несколько раз и при горячих электродах составляет от 400 до 1000 вольт. При холодных электродах это напряжение может быть значительно выше. Простейшим способом получения таких напряжений при одновременном прогреве электродов является включение параллельно лампе и последовательно с её электродами так называемых стартёров.  Стартёр – это тоже газоразрядный прибор, у которого один из электродов сделан из биметаллической пластинки, то есть пластинки, состоящей из двух металлов с разными коэффициентами теплового расширения. Напряжение зажигания стартёра должно быть ниже напряжения сети и выше напряжения горения лампы. При включении лампы в стартёре возникает разряд, и ток идёт по цепи: дроссель – левый электрод лампы – стартёр – правый электрод лампы. За счёт этого тока разогреваются электроды лампы и стартёра. При нагреве биметаллического электрода стартёра он начинает выпрямляться и в какой-то момент замыкается с другим электродом. После замыкания электроды стартёра начинают остывать и принимать исходную форму. В момент размыкания на дросселе возникает импульс напряжения, достаточного в сумме с напряжением сети для зажигания разряда в лампе. Так как напряжение горения лампы ниже напряжения зажигания стартёра, повторное возникновение разряда в стартёре не должно происходить.

Совокупность дросселя и стартёра называется электромагнитным ПРА. Нельзя называть «пускорегулирующим аппаратом» один дроссель, так как он не обеспечивает «пуска», то есть зажигания ламп, и ничего не регулирует.

Схема, исключительно проста и до середины 90-х годов минувшего века была монопольной, то есть применялась во всех светильниках с люминесцентными лампами. Однако этой схеме присущ один принципиальный недостаток: так как величина напряжения, возникающего на дросселе, прямо пропорциональна току через дроссель, а момент разрыва контактов стартёра не увязан с фазой тока, то довольно часто разрыв происходит при малых токах и возникающего на дросселе напряжения недостаточно для зажигания в лампе устойчивого разряда. В результате лампа начинает мигать – это явление всем хорошо знакомо. В лампах высокого давления, к которым относятся металлогалогенные и натриевые лампы, напряжение зажигания составляет 3 – 5 кВ и выше. У этих ламп нет прогреваемых электродов, то есть зажигание ламп всегда происходит при холодных электродах. Для таких ламп использование стартёра и схемы, изображённой на рис. 1, невозможно, поэтому для зажигания используются специальные импульсные зажигающие устройства, работающие только при включении ламп и обеспечивающие подачу на них требуемого напряжения. Иногда для облегчения зажигания в лампах высокого давления делается специальный «поджигающий» электрод, на который и подаётся высокое поджигающее напряжение. Как и у любого органа, у «второго сердца светильника» могут быть определённые пороки. Какими же пороками оно страдает? 1. Довольно большие потери мощности: в ПРА для маломощных люминесцентных ламп эти потери соизмеримы с мощностью самих ламп.

2. На промышленной частоте тока (50 Гц) световой поток пульсирует с частотой 100 Гц. Глаз не замечает этих пульсаций, но через подсознание они отрицательно влияют на наш организм. Кроме того, пульсации светового потока создают так называемый «стробоскопический эффект», когда предметы, вращающиеся с частотой пульсаций или кратной ей, кажутся неподвижными. Это может приводить к травматизму в цехах, оснащённых станками с такой частотой вращения обрабатываемых деталей или инструмента.

  • Люминесцентные лампы часто мигают при включении.
  • Пускорегулирующая аппаратура имеет довольно внушительные габариты и массу.
  • Световой поток ламп не поддаётся управлению, что несколько ограничивает возможности создания комфортных осветительных установок.
  • Часто дроссели «гудят», то есть создают неприятный звук с частотой 100 Гц.

Для лечения этих пороков применительно к люминесцентным лампам наиболее радикальным средством оказалось питание ламп током повышенной частоты. Для этого в качестве балласта последовательно с лампой включают сложное электронное устройство, преобразующее напряжение сети в другое напряжение с частотой, как правило, несколько десятков кГц и одновременно обеспечивающее зажигание ламп. Такие устройства получили название «электронные пускорегулирующие аппараты» (сокращённо ЭПРА). Первые ЭПРА появились ещё в 60-х годах прошлого века, однако их триумфальное шествие началось только в конце 80-х – начале 90-х годов. В настоящее время в ряде стран (Швеция, Швейцария, Голландия, Австрия) объём производства ЭПРА соизмерим с объёмом производства электромагнитных аппаратов. Чем же так хороши ЭПРА, что, несмотря на сложность и относительно высокую стоимость, они стремительно вытесняют прежние аппараты?

По сравнению с электромагнитными ПРА электронные аппараты имеют следующие неоспоримые преимущества:

  • при равных световых потоках снижается энергопотребление комплекта лампа-ПРА на 20-25%, а для ламп малой мощности даже до 50%;
  • до полутора раз увеличивается срок службы ламп;
  • исключаются пульсации светового потока и вызванный ими стробоскопический эффект;
  • уменьшается масса аппаратов и расход крайне дефицитных материалов – меди и электротехнической стали;
  • зажигание ламп происходит без миганий;
  • исключается гудение аппаратов;
  • исключается применение стартёров;
  • появляется возможность регулирования светового потока ламп и за счёт этого дополнительная экономия электроэнергии;
  • коэффициент мощности (аналог известного cos j) увеличивается до 1, что исключает необходимость применения компенсирующих конденсаторов и снижает токовую нагрузку проводов;
  • снижается спад светового потока ламп в течение их срока службы.

 Кроме того, с внедрением ЭПРА появилась возможность создания систем управления освещением в помещениях, обеспечивающих наибольшую экономию электроэнергии и максимальный комфорт.

Цена электронного «второго сердца» светильника в настоящее время в 5 – 10 раз выше, чем электромагнитного ПРА и стартёра. Однако этот (временный!) недостаток ЭПРА окупается за счёт экономии электроэнергии и увеличения срока службы ламп. Специалисты крупнейших светотехнических фирм (Osram, Philips, Motorola и др.) посчитали, что при нынешнем уровне цен электроэнергии и аппаратов срок окупаемости ЭПРА составляет от 1 до 2, 5 лет в зависимости от времени работы ламп. В настоящее время в мире производится до 300 млн. шт. ЭПРА в год, причём около половины этого количества – в составе так называемых интегрированных компактных люминесцентных ламп, предназначенных для прямой замены привычных ламп накаливания без применения какой-либо дополнительной аппаратуры. Конструкции ЭПРА весьма разнообразны  Что касается разрядных ламп высокого давления (например, металлогалогенных), то здесь применение тока повышенной частоты не даёт столь ощутимых преимуществ, как у люминесцентных ламп, а иногда просто неприменимо, опять же из-за физики газового разряда (неустойчивости разряда на высокой частоте). Однако в последние годы электроника начинает внедряться и здесь. В отличие от люминесцентных ламп, электронные аппараты обеспечивают питание ламп высокого давления не высокочастотным током, а прямоугольными импульсами низкой частоты (100 – 150 Гц). Такое питание позволило резко снизить, а иногда и полностью исключить пульсации светового потока ламп, а также массу и габариты самих аппаратов.

В настоящее время ЭПРА для разрядных ламп высокого давления мощностью до 150 Вт производятся в небольших количествах на заводе ЭНЭФ (Белоруссия), на предприятиях фирм Osram, Tridonic, Philips. Однако, нет сомнений, что в ближайшие годы начнётся такое же бурное внедрение электронных аппаратов для ламп высокого давления, какое мы видим сейчас у ЭПРА для люминесцентных ламп. 

Размещено компанией ПолимерСТИЛЬ [17.02.2009]

www.energoportal.ru

Электронный пускорегулирующий аппарат (ПРА, ЭПРА): что это такое, устройство, способы применения

В сравнении с лампами накаливания люминесцентные лампы обладают рядом преимуществ. У них выше световая отдача, большой выбор оттенков и длительный срок службы. Но они не работают от стандартной сети в 220 вольт. Поэтому для них нужен специальный переходник. Пускорегулирующая аппаратура (ПРА) — что это за прибор, известно не каждому.

Конструкция устройства предельно проста. Она состоит из дросселя, который сглаживает пульсацию, стартера в роли пускателя и конденсатора для стабилизации напряжения. Но этот прибор уже считается устаревшим.

Модели были доработаны и теперь они называются электронными пускорегулирующими аппаратами (ЭПР). Они относятся к тому же типу приборов, что и ПРА, но в их основе лежит электроника. По сути, это плата небольшого размера с несколькими элементами. Компактная конструкция позволяет устанавливать ее без особых затруднений.

Все ПРА условно делят на два вида:

  • состоящие из единого блока;
  • состоящие из нескольких частей.

Классифицировать приборы можно и по типу ламп: аппараты для галогеновых, светодиодных и газоразрядных. Для понимания того, что такое ЭмПРА, и чем она отличается от ЭПРА, нужно рассматривать характеристики функционирования. Они могут быть электронными и электромагнитными.

Основные характеристики

Установка ЭПРА позволяет снизить количество потребляемой энергии. Прибор позволяет лампам запускаться мгновенно. У этого устройства есть аналоги, но они шумные и громоздкие. При подключении ПРА мерцание ламп снижается до нуля.

Отсутствие фальстарта лампы — вспышки перед зажиганием. Это позволяет нитям накаливания служить дольше.

Благодаря использованию современных устройств достигается стабильность освещения. У некоторых моделей предусмотрена функция настройки яркости.

Светильник ПРА работает быстро, но плавно, он не шумит и не моргает. Новый пусковой блок обеспечивает несколько видов защиты, и это повышает безопасность эксплуатации и снижает риск возникновения пожара.

Принцип работы прибора очень простой. На первом этапе происходит включение, которое разогревает электроды лампы — на это уходят считанные секунды, после чего свет плавно зажигается. Электронные ПРА можно эксплуатировать при низких температурах.

На втором этапе осуществляется поджиг. Генерируется импульс высокого напряжения, и он способствует наполнению колбы газом. После чего происходит горение, в ходе которого поддерживается невысокое напряжение, которое обеспечивает работу лампы.

Особенности тестирования

Электронные пускорегулирующие аппараты проходили ряд испытаний. Это было необходимо для проверки их качества и выявления брака изделий. Тесты показали, что встроенная люминесцентная лампа может работать: в широком диапазоне напряжений — 110−220 вольт. Вместе с этим показателем меняется частота преобразователя — при 220 вольт она составляет 38 кГц, при 100 вольт — 56 кГц.

Снижение напряжения приведет к уменьшению яркости. Люминесцентные светильники используют переменный ток, который позволяет равномерно изнашивать устройство. В особенности — его нити накаливания. Это позволяет продлить срок службы лампы. В процессе тестирования использовался постоянный ток, и это быстро вывело устройство из строя.

Некоторые фирмы производят ЭПРА нового стандарта. На самом деле эти приборы отличаются низкой стоимостью и аналогичным качеством:

  • у таких устройств небольшой срок службы;
  • схемы не обеспечивают предварительный «прогрев», и это негативно влияет на работу ламп;
  • у них отсутствует регулировка выходной мощности при колебаниях напряжения;
  • автоматическое отключение светильников в конце их службы;

Использование дешевых и низкокачественных электронных пускорегулирующих аппаратов приводит к сокращению службы светильников и повышению эксплуатационных расходов.

Причины неисправностей

Люминесцентная лампа может не работать из-за разных поломок. Чаще всего это происходит из-за трещин в местах пайки на плате. Когда светильник включается, он начинает греться, и происходит остывание блока ЭПРА. Перепады температуры приводят к обрыву схемы.

При проблемах с нитью накаливания сам блок остается в рабочем состоянии. Поэтому достаточно заменить сгоревшую лампу.

Электронные элементы чаще всего выходят из строя из-за скачков напряжения. Первым страдает транзистор. Установка предохранителей цепи не спасает от возможных поломок, поэтому люминесцентные лампы лучше не включать в плохую погоду. В некоторых случаях дело может быть в неправильно проведенной схеме подключения к лампе.

Оптимальная модель — это аппарат с защитой от нестандартных режимов работы источников света и от их деактивации. При выборе конкретного устройства стоит обратить внимание на допустимые погодные условия.

220v.guru


Смотрите также

Возврат к списку