Отдел продаж
8 (499) 755-89-57
Лодки, запчасти
8 (499) 755-89-57

Принцип работы топливных элементов


Топливные элементы для привода автомобилей

Топливные элементы для привода автомобилей представляют со­бой электрохимические преобразователи энергии, заключенной в топливе, непосред­ственно в электроэнергию. В водородно­кислородном топливном элементе водород вступает в реакцию «холодного горения» с кислородом, в процессе которой образу­ется вода и генерируется электрический ток. Топливные элементы не содержат движу­щихся частей, работают без механического трения, с низким уровнем шума и без загряз­няющих окружающую среду выбросов.

Принцип действия топливных элементов

Топливный элемент состоит из двух элемен­тов (анода и катода), разделенных электро­литом (см. рис. «Принцип действия топливного элемента типа PEM» ). Электролит непроницаем для электронов. Электроды соединяются друг с другом внешней электрической цепью.

На автомобилях в основном применяются топливные элементы с полимерной мембра­ной в качестве электролита, называемой также протонообменной (РЕМ) (см. рис. «Структура топливного элемента типа РЕМ» ). Принцип действия топливных элементов описан ниже на примере элементов этого типа.

Принцип действия топливного элемента типа РЕМ

В топливном элементе типа РЕМ водород на­правляется к аноду, где он окисляется. При это образуются ионы Н+ (протоны) и электроны (см. рис. 1, а).

Анод:               2 Н2 —» 4 Н+ + 4 е— .

Электролит можно рассматривать как про­водящую протоны полимерную мембрану. Электролит проницаем для протонов, но не для электронов. Протоны Н+, образующиеся на аноде, проходят через мембрану и дости­гают катода. Для того чтобы через мембрану могли проходить протоны, она должна быть достаточно увлажнена. Кислород направ­ляется к катоду, где происходит его восстановление (см. рис. b, «Принцип действия топливного элемента типа PEM» ). Восстановление происходит за счет электронов, проходящих от анода к катоду по внешней электрической цепи.

Катод:               O2 + 4 е— —> 2 О2-

На следующей стадии реакции ионы О2- реа­гируют с протонами с образованием воды.

Катод:               4 Н+ + 2 О2- —> 2 Н2O

В результате общей реакции, протекающей в топливном элементе, из водорода и кисло­рода образуется вода (см. рис. с, «Принцип действия топливного элемента типа PEM» ). В отличие от реакции с образованием гремучего газа, в ходе которой водород и кислород реагируют друг с другом взрывообразно, здесь реакция протекает в форме «холодного горения», по­скольку стадии реакции протекают раздельно на аноде и катоде.

Общая реакция: 2 Н2 + O2 —> 2 Н2O.

Описанные выше реакции протекают на ка­талитических покрытиях электродов. В каче­стве катализатора чаще всего используется платина.

Теоретическое напряжение одного эле­мента

Теоретическое напряжение одного водородно-кислородного топливного эле­мента при температуре 25 °С составляет 1,23 В. Это значение получено из стандартных значений потенциалов электродов. Однако на практике, во время работы элемента, это напряжение не достигается; оно составляет 0,5-1,0 В. Потерю напряжения можно объяс­нить внутренним сопротивлением элемента или ограничениями, налагаемыми газовой диффузией (см. рис. «Электрические характеристики топливного элемента» ). В основном напря­жение зависит от температуры, стехиометри­ческих отношений водорода и кислорода к количеству произведенного электричества, парциального давления водорода и кисло­рода и плотности тока.

На автомобилях применяются батареи топливных элементов мощностью от 5 до 100 кВт. Чтобы получить высокие напряжения, требуемые для технического примене­ния элементов, элементы последовательно соединяются в батареи (см. рис.4 «Структура батареи топливных элементов»). Батареи могут включать от 40 до 450 элементов, т.е. их максимальное рабочее напряжение со­ставляет от 40 до 450 В.

Высокие значения электрического тока до­стигаются за счет соответствующей площади поверхности мембраны. Значения выходного тока батарей топливных элементов для авто­мобилей достигает 500 А.

Принцип действия системы топливных элементов

Для использования батареи топливных эле­ментов требуются подсистемы подачи водо­рода и кислорода (см. рис. «Электропривод с системой топливных элементов» ). В принципе, эти системы могут быть реализованы самыми различными способами. Описываемый здесь вариант используется во многих случаях.

Система подачи водорода в топливные элементы

Запас водорода хранится в баллоне высокого давления (700 бар). При помощи редуктора давление водорода понижается приблизи­тельно до 10 бар, и водород поступает в га­зовый инжектор.

Инжектор представляет собой электромаг­нитный клапан, при помощи которого дав­ление водорода устанавливается на стороне анода. В отличие от топливных форсунок двигателей внутреннего сгорания инжектор водорода должен обеспечивать постоянный массовый расход. Типичное значение рас­хода водорода при мощности 100 кВт состав­ляет 2,1 г/с. Максимальное значение давле­ния водорода составляет 2,5 бар.

Для работы батареи топливных элементов требуется постоянный сквозной поток водо­рода на стороне анода (мера гомогенизации). С этой целью в системе организована рецир­куляция водорода.

Разрушающие анод инородные газы на стороне анода непрерывно удаляются через электромагнитный спускной клапан. Это предотвращает накопление инородных газов, выходящих из баллона, или диффузионных газов (азота, водяных паров) со стороны ка­тода. Клапан установлен на выпуске батареи, на стороне анода. Для слива избытка воды в тракте анода используется клапан, открытый при нулевом электрическом токе.

Водород, неизбежно выходящий во время слива воды, либо сильно разбавляется воз­духом, либо каталитически преобразуется в воду.

Подача кислорода в топливные элементы

Требуемый для электрохимической реакции кислород берется из окружающего воздуха. Необходимый массовый расход кислорода, составляющий, в зависимости от требуемой мощности батареи, до 100 г/с, подается компрессором. Кислород сжимается компрессо­ром максимум до 2,5 бар и подается на сто­рону катода топливного элемента. Давление в топливном элементе регулируется клапаном динамического регулирования давления, установленным в тракте выпуска отходящих газов на выходе топливного элемента.

Для обеспечения достаточного увлажне­ния полимерной мембраны, подаваемый в элемент воздух увлажняется либо при помощи дополнительной мембраны, либо пу­тем впрыска сконденсированной воды.

Тепловой баланс топливных элементов

Электрический КПД топливных элементов составляет приблизительно 50%. Другими словами, в процессе преобразования химиче­ской энергии генерируется приблизительно такое же количество тепловой энергии, что и количество электрической энергии. Это тепло необходимо рассеивать. Рабочая темпера­тура топливных элементов типа РЕМ состав­ляет приблизительно 85 °С, что меньше тем­пературы двигателей внутреннего сгорания. Несмотря на более высокий КПД, радиатор и вентилятор радиатора, при использовании на автомобиле топливных элементов, должны быть увеличены.

Поскольку используемая охлаждающая жидкость находится в прямом контакте с топливными элементами, она должна быть электрически непроводящей (деионизован­ной). Циркуляция охлаждающей жидкости обеспечивается электрическим насосом. Расход охлаждающей жидкости составляет до 12 000 л/ч. Клапан регулирования темпе­ратуры распределяет поток охлаждающей жидкости между радиатором и перепускным каналом.

В системе используется охлаждающая жидкость, представляющая собой смесь деионизованной воды и этиленгликоля. Охлаждающую жидкость необходимо деиониозировать на автомобиле. С этой целью она пропускается через ионообменник, запол­ненный специальной смолой, и очищается в процессе удаления ионов. Проводимость охлаждающей жидкости должна составлять менее 5 мкСм/см.

Коэффициент полезного действия системы топливных элементов

В дополнение к быстрой готовности батареи топливных элементов к отдаче энергии при большинстве оптимальных рабочих условий важно обеспечить высокий КПД системы.

На рис. «Коэффициент полезного действия батареи топливных элементов и системы топливных элементов» приведено сравнение КПД ба­тареи топливных элементов с КПД всей си­стемы. Часть электроэнергии потребляется вспомогательными компонентами, такими как компрессор, что снижает общий КПД системы. Тем не менее, системы топливных элементов обладают более высоким КПД, чем двигатели внутреннего сгорания, осо­бенно при работе в диапазоне частичных нагрузок.

Безопасность топливных элементов автомобиля

В целях обеспечения безопасности на авто­мобиле установлено несколько датчиков кон­центрации водорода. Водород представляет собой газ без цвета и запаха, который при объемной концентрации порядка 4% превра­щает воздух в горючую смесь. Датчики могут определять концентрацию водорода, начиная с 1%.

Принцип действия привода автомобилей на топливных элементах

Автомобили на топливных элементах пред­ставляют собой электромобили, в которых электроэнергия для питания электропривода генерируется системой топливных элементов.

По ряду причин целесообразно включить в систему тяговую аккумуляторную батарею:

  • Это позволяет запасать энергию во время рекуперативного торможения;
  • Это способствует повышению динамиче­ских характеристик привода;
  • Изменяя распределение нагрузки между системой топливных элементов и тяговой аккумуляторной батареей, можно еще бо­лее увеличить к.п.д. привода.

Поскольку тяговая аккумуляторная батарея явля­ется дополнительным источником энергии, такие автомобили известны под названием гибридизи­рованных автомобилей на топливных элементах. Отношение мощности тяговой аккумуляторной батареи к общей мощности (степень ги­бридизации) варьируется в зависимости от применения системы.

Обычно в качестве основного источника энергии для привода используются системы топливных элементов. Такие автомобили из­вестны под названием гибридных автомоби­лей на топливных элементах (FCHV). Обычно системы топливных элементов имеют номи­нальную мощность 60-100 кВт. Тяговые ак­кумуляторные батареи имеют номинальную мощность до 30 кВт при емкости 1-2 кВтч.

В качестве альтернативного варианта тяговая аккумуляторная батарея может иметь значительно более высокую номинальную мощность и емкость и при необходимости заряжаться от системы то­пливных элементов. При этом достаточно иметь батарею топливных элементов с номинальной мощностью от 10 до 30 кВт. Автомобили с такой конфигурацией источников энергии известны под названием автомобилей на топливных элементах с расширенным диапазоном (FC-REX).

Распределение электроэнергии между систе­мой топливных элементов, тяговой аккумуля­торной батареей и электроприводом осущест­вляется одним или более преобразователями постоянного напряжения. Различные конфигурации таких преобразователей, выбор которых зависит от применения, показаны на рис. «Конфигурации преобразователей напряжения в системах привода на топливных элементах». В зависимости от конфигурации напряжение питания электропривода идентично напряже­нию одного из двух источников электроэнер­гии (см. рис. а и b, «Конфигурации преобразователей напряжения в системах привода на топливных элементах» ), или изолировано от напряжения тяговой аккумуляторной батареи и батареи топливных элементов (см. рис. с, «Конфигурации преобразователей напряжения в системах привода на топливных элементах»).

Система электропривода

Система электропривода включает силовой электронный блок (преобразователь) и элек­тродвигатель. Электродвигатель представляет собой синхронную или асинхронную электри­ческую машину, питание которой осуществля­ется от преобразователя таким образом, чтобы получить требуемый крутящий момент. По­скольку электропривод имеет высокую номи­нальную мощность (приблизительно 100 кВт), величина рабочего напряжения может дости­гать 450 В. В области автомобилестроения ис­пользуются термины «высокое напряжение» и «электрическая система высокого напряже­ния». Электрическая система высокого напря­жения изолирована от массы автомобиля.

Во время торможения автомобиля электро­двигатель переходит в генераторный режим и генерирует электрический ток. Электроэнергия запасается в тяговой аккумуляторной батарее.

При помощи преобразователя высокое на­пряжение постоянного тока преобразуется в многофазное переменное напряжение, амплитуда которого регулируется в зависи­мости от требуемого крутящего момента. Как правило, используются преобразователи с выходными каскадами на биполярных тран­зисторах с изолированным затвором (IGBT).

Тяговая аккумуляторная батарея

В зависимости от степени гибридизации использу­ются аккумуляторные батареи высокой емкости или высокой энергии с напряжением от 150 до 400 В. В качестве аккумуляторной батареи высокой емкости используются никель-металлгидридные или литий-ионные аккумуляторные батареи, в то время как в качестве аккумуляторных батарей высо­кой энергии — только литий-ионные аккумуляторы. Система мониторинга тяговой аккумулятор­ной батареи контролирует степень зарядки и емкость аккумуляторной батареи.

Преобразователь постоянного напряжения тяговой АКБ

Преобразователь постоянного напряжения тя­говой аккумуляторной батареи осуществляет регулирование тока зарядки тяговой аккуму­ляторной батареи и выходного тока (до 300 А). Некоторые конфигурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения батареи топливных элементов

Еще одним преобразователем постоянного напряжения является преобразователь на­пряжения батареи топливных элементов, осуществляющий регулирование выходного тока в пределах до 500 А. Некоторые конфи­гурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения 12 В

Так же как на обычных автомобилях, на ав­томобилях на топливных элементах имеется электрическая система напряжением 12 В. Напряжение 12 В преобразуется из высокого напряжения. Для этой цели служит преобразо­ватель постоянного напряжения, включенный между двумя системами. Из соображений без­опасности этот преобразователь электрически изолирован. Он работает однонаправленно или двунаправленно и имеет номинальную мощность до 3 кВт.

Перспективы системы приводов на топливных элементах

Системы приводов на топливных элементах уже продемонстрировали свою пригодность в повседневной эксплуатации. Однако, для коммерческого использования в системах приводов автомобилей топливные элементы должны быть усовершенствованы в отноше­нии экономичности и возможности серий­ного производства.

Упрощение системы дает снижение затрат и повышение надежности. Одним из направ­лений является разработка новых полимер­ных мембран для топливных элементов, не требующих увлажнения образующихся в ходе реакции газов и в то же время позволяющих повысить рабочую температуру.

Кроме того, необходимо значительно сни­зить стоимость всех компонентов. В этом отношении большой потенциал заключается в уменьшении количества платины в катали­тическом слое топливного элемента.

В следующей статье я расскажу о рекуперативной системе торможения.

ТОПЛИВНЫЙ ЭЛЕМЕНТ

Содержание статьи

ТОПЛИВНЫЙ ЭЛЕМЕНТ, электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке. См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ.

Принцип действия.

Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:

Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH–) с образованием воды и электрона:

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H–). Результирующую реакцию на катоде можно записать в виде:

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента.

Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен – приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме.

Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.

Типы топливных элементов.

Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.

Элементы на водородном топливе.

В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами.

Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.

Элементы на углеводородном и угольном топливах.

Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре.

Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо «расщепляется» внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе.

Элементы, работающие на других видах топлива.

В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.

Коэффициент полезного действия.

Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, – процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40–45%.

Применения.

Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями.

Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей «Аполлон» применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля.

Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.

Автомобили на топливных элементах — чистая энергия с «водяным выхлопом»

Глобальная разработка автомобилей на топливных элементах началась еще в середине 90-х годов. Причиной поиска альтернативного топлива на экологически чистых компонентах, стал энергетический кризис и начало введения новых стандартов выброса в атмосферу углекислого газа. Возможности единственного эко транспорта этого периода — электромобилей, были крайне ограничены: малый запас хода, длительная зарядка батарей и дороговизна комплектующих подталкивали производителей к поиску других способов производства чистой энергии, которая могла бы приводить автомобили в действие.

Изначально, основным топливным элементом был выбран водород. Его химические свойства, распространенность в природе, экологичность предоставляли разработчикам большие перспективы.

Автомобили на водороде, могли бы проезжать такие же расстояния, как и машины с ДВС, иметь схожую скорость и мощность. Сложность состояла в том, что нужно было создать соответствующий двигатель и направить энергию водорода в нужное русло.

Как функционирует двигатель на топливных элементах

Определить, кто первым изобрел двигатель внутреннего сгорания, работающий на водороде довольно сложно. Если говорить откровенно, то это сделал еще в начале 19 века, французский естествоиспытатель Франсуа де Риваз, который производил водород электролизом воды. Что касается современности, то автомобили на водородном топливе появились у крупных производителей практически в одно и то же время, а их базовые технические характеристики были во много одинаковы.

Принцип работы и типы двигателей на топливных водородных элементах имеют схожую с электромобилями модель работы, однако кардинально отличаются способом создания энергии приводящей двигатель и автомобиль в движение.

Схема работы автомобиля на топливных элементах

  1. Контроль мощности.
  2. Двигатель.
  3. Батареи.
  4. Водородный баллон.
  5. Аккумулятор.

Если описывать принцип работы двигателя на топливных элементах простым языком, то прежде всего стоит пояснить, что «приготовление» самого топлива, то есть движущей силы происходит непосредственно внутри «топливного бака», ведь создание энергии в установках на топливных элементах целиком основано на происходящих в них физико-химических процессах. Начинается все с того, что в корпус установки помещается проводящая исключительно протоны мембранная перегородка, которая выполняет функцию разделителя анодной и катодной камер. В процессе работы происходит обмен реактивами, в анодный отсек подается водород, а в отдел с катодом кислород.

Электроды установки покрывают усиливающим реакции катализатором, зачастую им выступает платина. Взаимодействие с катализатором приводит к потере водородом своих электронов. Параллельно сквозь мембрану начинается движение протонов к катоду, которые под влиянием катализатора (платины) связуются с электронами. Результатом реакции является образование воды, а освободившиеся электроны из анодного отсека движутся по электроцепи подсоединенной к мотору, образуя энергию. То есть, физико-химическая реакция водородных элементов преобразуется в чистый электрический ток, с водой в качестве «выхлопа».

Заправка и обслуживание автомобилей на топливных элементах

 Расчетной единицей водородного топлива служит килограмм. Заправка автомобилей водородом имеет три формата.

  1. Мобильные станции.
  2. Стационарные станции.
  3. Домашние станции.

Что интересно, практически каждая из станций может производить водород самостоятельно, к примеру, домашний тип производит топливо в любое время путем электролиза воды. Такая станция может вырабатывать до 1000 кг водорода в год, чего вполне хватает на заправку двух авто.

Заправка автомобиля водородом на станциях происходит привычным для нас образом. Весь процесс отнимает не более 3 минут.

Что касается обслуживания, то для всех доступных автомобилей на водороде оно пока производится в профильных сервисных центрах каждого бренда.

Водородный двигатель в современных реалиях

Перспективы использования двигателя на топливных элементах огромны. Во-первых, это на 100% экологически чистый вид энергии. Во-вторых, мощность, скорость и КПД двигателей идентичны современным авто с ДВС. В-третьих, полная независимость от бензина или дизеля.

Но есть и определенные недостатки. К сожалению, из-за дороговизны компонентов, прежде всего платины, автомобили этой категории в ближайшее время будут стоить немалых денег, к примеру, цена японского представителя сегмента выпущенного ограниченным тиражом Honda Clarity, стартует от $67 тысяч и это далеко не люксовый автомобиль. Немного дешевле обходится и первый серийный экокар на топливных элементах Toyota Mirai, но и он далек от массовой доступности из-за внушительного ценника в $57 тысяч.

Honda Clarity FCV и Toyota Mirai FCV

Куда радужнее перспективы водородных двигателей в сегменте общественного транспорта. Германией уже вовсю курсируют городские и туристические автобусы с двигателем на топливных элементах. А уже в этом году анонсирован запуск первого «водородного» поезда, который призван заменить старые дизельные тягачи.

Автор: hevcars.com.ua

HEVCARS 🔌 Автор

Читайте самые интересные новости и статьи о электрокарах в Telegram и Facebook!

Как работают топливные элементы

В США приняты несколько инициатив, направленных на разработку водородных топливных элементов, инфраструктуры и технологий, чтобы сделать автомобили на топливных элементах практичными и экономичными к 2020 году. На эти цели выделено более, чем один миллиард долларов.

Топливные элементы вырабатывают электричество тихо и эффективно, без загрязнения окружающей среды. В отличие от источников энергии, использующих ископаемое топливо, побочными продуктами от работы топливных элементов являются тепло и вода. Как это работает?

В этой статье мы кратко рассмотрим каждую из существующих топливных технологий на сегодняшний день, а так же расскажем об устройстве и работе топливных элементов, сравним их с другими формами получения энергии. Мы также обсудим некоторые из препятствий, с которыми сталкиваются исследователи, чтобы сделать топливные элементы практичными и доступными для потребителей.

Топливные элементы — это электрохимические устройства преобразования энергии. Топливный элемент преобразует химические вещества, водород и кислород в воду, в процессе чего вырабатывает электричество.

Другое электрохимическое устройство, с которым мы все хорошо знакомы, — аккумулятор. Батарея имеет все необходимые химические элементы внутри себя и превращает этих вещества в электричество. Это означает, что аккумулятор, в конце концов, «умирает» и вы либо выбрасываете, либо снова заряжаете его.

В топливном элементе химические вещества постоянно поступают в него, чтобы он никогда не «умирал». Электричество будет вырабатываться так долго, сколько будет происходить поступление химических веществ в элемент. Большинство топливных элементов, применяемых сегодня, используют водород и кислород.

Водород — наиболее распространенный элемент в нашей Галактике. Однако водород практически не существует на Земле в его элементарной форме. Инженеры и ученые должны извлекать чистый водород из водородных соединений, включая ископаемое топливо или воду. Чтобы добыть водород из этих соединений, нужно затратить энергию в виде высокой температуры или электричества.

Изобретение топливных элементов

Сэр Уильям Гроув изобрел первый топливный элемент в 1839 году. Гроув знал, что воду можно разделить на водород и кислород путем пропускания электрического тока через нее (процесс, называемый электролизом). Он предположил, что в обратном порядке можно было бы получить электричество и воду. Он создал примитивный топливный элемент и назвал ее газовой гальванической батареей. Поэкспериментировав со своим новым изобретением, Гроув доказал свою гипотезу. Пятьдесят лет спустя, ученые Людвиг Монд и Чарльз Лангер придумали термин топливные элементы при попытке построить практическую модель для производства электроэнергии.

Топливный элемент будет конкурировать со многими другими устройствами конвертации  энергии, в том числе с газовыми турбинами на городских электростанциях, двигателями внутреннего сгорания в автомобилях, а так же всевозможными аккумуляторами. Двигатели внутреннего сгорания, так же как и газовые турбины, сжигают различные виды топлива и используют давление, создаваемое путем расширения газов, чтобы выполнять механическую работу. Аккумуляторы преобразовывают химическую энергию в электрическую энергию, когда это необходимо. Топливные элементы должны выполнять эти задачи более эффективно.

Топливный элемент обеспечивает напряжение DC (постоянный ток), который может быть использован для питания электродвигателей, освещения и других электроприборов.

Существует несколько различных типов топливных элементов, каждый из которых использует различные химические процессы. Топливные элементы обычно классифицируются по их рабочей температуре и типу электролита, который они используют. Некоторые типы топливных элементов, хорошо годятся для использования в стационарных электростанциях. Другие могут быть полезными для небольших портативных устройств или для питания автомобилей. Основные типы топливных элементов включают в себя:

Топливный элемент с полимерной мембраной обмена Polymer exchange membrane fuel cell (PEMFC)

PEMFC рассматривается в качестве наиболее вероятного кандидата для применения на транспорте. PEMFC имеет как высокую мощность, так и относительно низкую рабочую температуру (в диапазоне от 60 до 80 градусов по Цельсию). Низкая рабочая температура означает, топливные элементы быстро смогут разогреться, чтобы начать генерацию электроэнергии.

Твердооксидные топливные элементы Solid oxide fuel cell (SOFC)

Эти топливные элементы наиболее подходят для крупных стационарных генераторов энергии, которые могли бы обеспечить электроэнергией фабрики или города. Этот тип топливных элементов работает при очень высоких температурах (от 700 до 1000 градусов по Цельсию). Высокая температура составляет проблему надежности, потому что часть топливных элементов может выйти из строя после нескольких циклов включения и выключения. Однако, твердооксидные топливные элементы являются очень стабильными при непрерывной работе. В самом деле, SOFC продемонстрировали самый длинный срок эксплуатации любых топливных элементов при определенных условиях. Высокая температура также имеет преимущество: пар, вырабатываемый топливными элементами, может быть направлен в турбины и генерировать больше электроэнергии. Этот процесс называется когенерацией тепла и электроэнергии и повышает общую эффективность системы.

Щелочной топливный элемент Alkaline fuel cell (AFC)

 Это один из древнейших образцов для топливных элементов, используемый с 1960-х годов. AFC являются очень восприимчивыми к загрязнению, так как требуют чистый водород и кислород. Кроме того, они очень дороги, поэтому этот тип топливных элементов, вряд ли будет запущен в серийное производство.

Топливный элемент с расплавленным карбонатным электролитом Molten-carbonate fuel cell  (MCFC)

Как SOFC, эти топливные элементы также лучше всего подходят для больших стационарных электростанций и генераторов. Они работают при 600 градусов по Цельсию, так что могут генерировать пар, который, в свою очередь, может быть использован, чтобы генерировать еще больше энергии. Они имеют более низкую рабочую температуру, чем твердооксидные топливные элементы, что означает, что они не нуждаются в таких термоустойчивых материалах. Это делает их немного дешевле.

Топливный элемент на фосфорной кислоте Phosphoric-acid fuel cell (PAFC)

Топливный элемент на фосфорной кислоте имеет потенциал для использования в небольших стационарных энергетических системах. Он работает на более высокой температуре, чем топливный элемент с полимерной мембраной обмена, поэтому он дольше разогревается, что делает его непригодным для использования в автомобилях.

Метаноловые топливные элементы Direct methanol fuel cell (DMFC)

Метаноловые топливные элементы сравнимы с PEMFC в отношении рабочей температуры, но не так эффективны. Кроме того, DMFC требуют довольно большого количества платины, выступающей в качестве катализатора, который делает эти топливные элементы дорогими.

 Топливный элемент с полимерной мембраной обмена

Топливный элемент с полимерной мембраной обмена (PEMFC) является одной из наиболее перспективных технологий топливных элементов. PEMFC использует одну из простейших реакций среди любых топливных элементов. Рассмотрим, из чего он состоит.

1. Анод – негативная клемма топливного элемента. Он проводит электроны, которые высвобождаются из молекул водорода, после чего они могут быть использованы во внешней цепи. В нем выгравированы каналы, по которым газообразный водород распределяется равномерно по поверхности катализатора.

2. Катод — позитивная клемма топливного элемента, также имеет каналы для распределения кислорода по поверхности катализатора. Он также проводит электроны обратно из внешней цепи катализатора, где они могут соединиться с ионами водорода и кислорода с образованием воды.

3. Электролит-протонообменная мембрана. Это специально обработанный материал, который проводит только положительно заряженные ионы и блокирует электроны. У PEMFC, мембрана должна быть увлажненной, чтобы нормально функционировать и оставаться стабильной.

4. Катализатор — это специальный материал, который способствует реакции кислорода и водорода. Обычно он изготавливается из наночастиц платины, очень тонко нанесенных на копировальную бумагу или ткань. Катализатор имеет такую структуру поверхности, чтобы максимальная площадь поверхности платины могла быть подвержена воздействию водорода или кислорода.

 На рисунке показан газообразный водород (h3), входящий под давлением в топливный элемент со стороны анода. Когда молекула h3 соприкасается с платиной на катализаторе, она разделяется на два H+ иона и два электрона. Электроны проходят через анод, где они используются во внешней схеме (выполнение полезной работы, например, вращение двигателя) и возвращаются к стороне катода топливного элемента.

Между тем, на стороне катода топливного элемента, кислород (O2) из воздуха проходит через катализатор, где формирует два атома кислорода. У каждого из этих атомов есть сильный отрицательный заряд. Этот отрицательный заряд привлекает два H+ иона через мембрану, где они объединяются с атомом кислорода и двумя электронами, пришедшими из внешней схемы, чтобы сформировать молекулу воды (h3O).

Эта реакция в одиночном топливном элементе производит только приблизительно 0,7 Вольт. Чтобы повысить напряжение до разумного уровня, много отдельных топливных элементов должны быть объединены, чтобы сформировать стек топливного элемента. Биполярные пластины используются для соединения одного топливного элемента с другим и подвергаются окислению с уменьшением потенциала. Большая проблема биполярных пластин – их стабильность. Металлические биполярные пластины могут разъедаться коррозией, и побочные продукты (железо и ионы хрома) уменьшают эффективность мембран топливного элемента и электродов. Поэтому низкотемпературные топливные элементы используют легкие металлы, графит и композитные соединения углерода и термореактивного материала (термореактивный материал — своего рода пластмасса, которая остается твердой, даже когда подвергается высоким температурам) в виде биполярного листового материала.

Эффективность топливного элемента

Сокращение загрязнения — одна из основных целей топливного элемента. Сравнивая автомобиль, приведенный в действие топливным элементом с автомобилем, приведенным в действие бензиновым двигателем и автомобилем, работающим от аккумулятора, вы увидите, как топливные элементы могли бы повысить эффективность автомобилей.

Так как у всех трех типов автомобилей есть многие одни и те же самые компоненты, мы проигнорируем эту часть автомобиля и сравним полезные действия до пункта, где производится механическая энергия. Давайте начнем с автомобиля на топливных элементах.

Если топливный элемент приведен в действие чистым водородом, его КПД может составить до 80 процентов. Таким образом, он преобразовывает 80 процентов энергетического содержания водорода в электроэнергию. Однако мы еще должны преобразовать электроэнергию в механическую работу. Это достигается электродвигателем и инвертором. КПД двигателя + инвертора также составляет приблизительно 80 процентов. Это дает полную эффективность приблизительно 80*80/100=64 процентов. У концептуального транспортного средства Хонды FCX по сообщениям есть 60-процентная эффективность использования энергии.

Если топливный источник не будет в виде чистого водорода, то транспортное средство будет также нуждаться в риформаторе. Риформаторы превращают углеводородные или спиртовые топлива в водород. Они вырабатывают тепло и производят CO и CO2 помимо водорода. Для очистки полученного водорода в них используются различные устройства, но эта очистка недостаточна и понижает эффективность топливного элемента. Поэтому исследователи решили сконцентрироваться на топливных элементах для транспортных средств, работающих на чистом водороде, несмотря на проблемы, связанные с производством и хранением водорода.

Эффективность бензинового двигателя и автомобиля на электрических батареях

Эффективность автомобиля, приведенного в действие бензином — удивительно низкая. Вся высокая температура, которая выходит в виде выхлопа или поглощается радиатором, является потраченной впустую энергией. Двигатель также использует много энергии, вращающей различные насосы, вентиляторы и генераторы, которые поддерживают его работу. Таким образом, полная эффективность автомобильного бензинового двигателя составляет приблизительно 20 процентов. Таким образом, только приблизительно 20 процентов содержания тепловой энергии бензина преобразуются в механическую работу.

У работающего от аккумулятора электромобиля есть довольно высокая эффективность. Батарея имеет КПД, приблизительно, 90 процентов (большинство батарей вырабатывает некоторое тепло или требует нагревания), и электродвигатель + инвертор с КПД, приблизительно 80 процентов. Это дает полную эффективность, приблизительно, 72 процента.

Но это не все. Для того, чтобы электромобиль двигался, электричество должно быть сначала где-нибудь произведено.  Если это была электростанция, которая использовала процесс сгорания ископаемого топлива (а не ядерную, гидроэлектрическую, солнечную или ветровую энергию), то только приблизительно 40 процентов топлива, потребленного электростанцией, были преобразованы в электричество. Плюс, процесс зарядки автомобиля требует преобразования мощности переменного тока (AC) к мощности постоянного тока (DC). У этого процесса КПД приблизительно 90 процентов.

Теперь, если мы смотрим на целый цикл, эффективность электромобиля составляет 72 процента для самого автомобиля, 40 процентов для электростанции и 90 процентов для зарядки автомобиля. Это дает полную эффективность 26 процентов. Полная эффективность значительно варьируется в зависимости от того, какая электростанция используется для зарядки аккумулятора. Если электричество для автомобиля произведено, например, гидроэлектростанцией, то эффективность электромобиля составит приблизительно 65 процентов.

Ученые исследуют и совершенствуют проекты, чтобы продолжать повышать эффективность топливного элемента. Один из новых подходов должен объединить топливный элемент и работающие от аккумулятора транспортные средства. Разрабатывается концептуальное транспортное средство, приводимое в действие гибридной трансмиссией с подпиткой от топливного элемента. Оно использует литиевую батарею, приводящую автомобиль в действие, в то время как топливный элемент перезаряжает батарею.

Транспортные средства на топливных элементах потенциально так же эффективны как работающий от аккумулятора автомобиль, который заряжается от электростанции, не использующей ископаемое топливо. Но достижение такого потенциала практическим и доступным способом может оказаться трудным.

Зачем нужно использовать топливные элементы?

Основной причиной является все, что связано с нефтью. Америка должна импортировать почти 60 процентов своей нефти. К 2025 г. импорт, как ожидается, вырастет до 68%. Две трети нефти американцы используют ежедневно для перевозок. Даже если каждый автомобиль на улице был бы гибридным автомобилем, к 2025 году в США все равно пришлось бы использовать то же количество нефти, которое потреблялось американцами в 2000 году. В самом деле, Америка потребляет четверть всей нефти, добываемой в мире, хотя только 4,6% мирового населения живет здесь.

Эксперты ожидают, что цены на нефть продолжат расти в течение следующих нескольких десятилетий, так как более дешевые источники истощаются. Нефтяные компании должны разрабатывать нефтяные месторождения во все более сложных условиях, отчего будут повышать цены на нефть.

Опасения простираются далеко за пределы экономической безопасности. Много средств, поступающих от продажи нефти, расходуются на поддержание международного терроризма, радикальных политических партий, нестабильной обстановки в нефтедобывающих регионах.

Использование нефти и других видов ископаемого топлива для получения энергии производит загрязнение. Оно наилучшим образом подходит для всех найти альтернативу-сжигание ископаемого топлива для получения энергии.

Топливные элементы являются привлекательной альтернативой нефтяной зависимости. Топливные элементы вместо загрязнения производят чистую воду в качестве побочного продукта. Хотя инженеры временно сосредоточились на производстве водорода из различных ископаемых источников, таких как бензин или природный газ, изучаются возобновляемые, экологически чистые способы получения водорода в будущем. Самым перспективным, естественно, станет процесс получения водорода из воды

Зависимость от нефти и глобальное потепление — международная проблема. Несколько стран совместно участвуют в развитии исследований и разработок для технологии топливных элементов.

Очевидно, что ученые и производители должны немало потрудиться, прежде чем топливные элементы станут альтернативой современным методам производства энергии. И все же, при поддержке всего мира и глобальном сотрудничестве, жизнеспособная энергетическая система на базе топливных элементов может стать реальностью уже через пару десятилетий.

Топливные элементы - ячейка (Fuel Cell)

Топливная ячейка (Fuel Cell) – это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Ячейки с протонной мембраной

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод — кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток — для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation — частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве — реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы.

При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента.

Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе.

Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств — в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.

Виды топливных ячеек

Ячейка с протонной мембраной PEMFC Твердооксидная ячейка SOFC

В настоящее время существуют такие виды топливных ячеек:

  • AFC – Alkaline Fuel Cell (щелочная топливная ячейка);
  • PAFC – Phosphoric Acid Fuel Cell (фосфорно-кислотная топливная ячейка);
  • PEMFC – Proton Exchange Membrane Fuel Cell (топливная ячейка с протонной обменной мембраной);
  • DMFC – Direct Methanol Fuel Cell (топливная ячейка с прямым распадом метанола);
  • MCFC – Molten Carbonate Fuel Cell (топливная ячейка расплавленного карбоната);
  • SOFC – Solid Oxide Fuel Cell (твердооксидная топливная ячейка).


Смотрите также

Возврат к списку